Variational Structured Attention Networks for Deep Visual Representation Learning

计算机科学 人工智能 深度学习 特征学习 推论 Boosting(机器学习) 卷积神经网络 机器学习 概率逻辑 代表(政治) 特征(语言学) 分割 模式识别(心理学) 语言学 哲学 政治 政治学 法学
作者
Guanglei Yang,Paolo Rota,Xavier Alameda-Pineda,Dan Xu,Mingli Ding,Elisa Ricci
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tip.2021.3137647
摘要

Convolutional neural networks have enabled major progresses in addressing pixel-level prediction tasks such as semantic segmentation, depth estimation, surface normal prediction and so on, benefiting from their powerful capabilities in visual representation learning. Typically, state of the art models integrate attention mechanisms for improved deep feature representations. Recently, some works have demonstrated the significance of learning and combining both spatial- and channel-wise attentions for deep feature refinement. In this paper, we aim at effectively boosting previous approaches and propose a unified deep framework to jointly learn both spatial attention maps and channel attention vectors in a principled manner so as to structure the resulting attention tensors and model interactions between these two types of attentions. Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework, leading to VarIational STructured Attention networks (VISTA-Net). We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters. As demonstrated by our extensive empirical evaluation on six large-scale datasets for dense visual prediction, VISTA-Net outperforms the state-of-the-art in multiple continuous and discrete prediction tasks, thus confirming the benefit of the proposed approach in joint structured spatial-channel attention estimation for deep representation learning. The code is available at https://github.com/ygjwd12345/VISTA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fan完成签到,获得积分20
刚刚
vanHaren发布了新的文献求助10
刚刚
WWF完成签到,获得积分20
刚刚
叶远望完成签到,获得积分10
1秒前
bob完成签到,获得积分10
2秒前
不是一个名字完成签到,获得积分10
3秒前
5秒前
情怀应助wuyd90采纳,获得10
6秒前
zplease完成签到,获得积分10
7秒前
7秒前
铁汁完成签到,获得积分10
9秒前
9秒前
默默的凡梅完成签到,获得积分10
10秒前
嘻嘻完成签到,获得积分10
10秒前
温婉的凝芙完成签到,获得积分10
10秒前
10秒前
愉快问枫发布了新的文献求助10
12秒前
祯果粒发布了新的文献求助10
12秒前
13秒前
L_完成签到,获得积分10
13秒前
友好真发布了新的文献求助10
13秒前
13秒前
14秒前
文静沛萍完成签到,获得积分10
15秒前
欢呼煎蛋发布了新的文献求助10
15秒前
4所得税d发布了新的文献求助10
19秒前
刘艳林完成签到,获得积分10
20秒前
战国瞳完成签到,获得积分10
21秒前
21秒前
22秒前
欢呼煎蛋完成签到,获得积分10
23秒前
25秒前
25秒前
maggiexjl完成签到,获得积分10
25秒前
三木足球完成签到,获得积分10
25秒前
871624521发布了新的文献求助10
26秒前
27秒前
29秒前
刘雨森完成签到,获得积分10
30秒前
潘盼盼发布了新的文献求助10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952586
求助须知:如何正确求助?哪些是违规求助? 3498015
关于积分的说明 11089846
捐赠科研通 3228577
什么是DOI,文献DOI怎么找? 1784998
邀请新用户注册赠送积分活动 869061
科研通“疑难数据库(出版商)”最低求助积分说明 801341