Variational Structured Attention Networks for Deep Visual Representation Learning

计算机科学 人工智能 深度学习 特征学习 推论 Boosting(机器学习) 卷积神经网络 机器学习 概率逻辑 代表(政治) 特征(语言学) 分割 模式识别(心理学) 语言学 哲学 政治 政治学 法学
作者
Guanglei Yang,Paolo Rota,Xavier Alameda-Pineda,Dan Xu,Mingli Ding,Elisa Ricci
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:2
标识
DOI:10.1109/tip.2021.3137647
摘要

Convolutional neural networks have enabled major progresses in addressing pixel-level prediction tasks such as semantic segmentation, depth estimation, surface normal prediction and so on, benefiting from their powerful capabilities in visual representation learning. Typically, state of the art models integrate attention mechanisms for improved deep feature representations. Recently, some works have demonstrated the significance of learning and combining both spatial- and channel-wise attentions for deep feature refinement. In this paper, we aim at effectively boosting previous approaches and propose a unified deep framework to jointly learn both spatial attention maps and channel attention vectors in a principled manner so as to structure the resulting attention tensors and model interactions between these two types of attentions. Specifically, we integrate the estimation and the interaction of the attentions within a probabilistic representation learning framework, leading to VarIational STructured Attention networks (VISTA-Net). We implement the inference rules within the neural network, thus allowing for end-to-end learning of the probabilistic and the CNN front-end parameters. As demonstrated by our extensive empirical evaluation on six large-scale datasets for dense visual prediction, VISTA-Net outperforms the state-of-the-art in multiple continuous and discrete prediction tasks, thus confirming the benefit of the proposed approach in joint structured spatial-channel attention estimation for deep representation learning. The code is available at https://github.com/ygjwd12345/VISTA-Net.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111发布了新的文献求助10
1秒前
XW完成签到,获得积分10
1秒前
3秒前
3秒前
123应助我的miemie采纳,获得20
5秒前
气泡水发布了新的文献求助10
5秒前
代祺发布了新的文献求助30
5秒前
淡淡的可仁完成签到,获得积分20
5秒前
着急的安珊完成签到,获得积分10
7秒前
8秒前
Amaretto1412发布了新的文献求助10
8秒前
默默冷松完成签到,获得积分10
8秒前
踏实口红完成签到,获得积分10
9秒前
科学家发布了新的文献求助10
9秒前
9秒前
9秒前
9秒前
9秒前
雍雍发布了新的文献求助10
10秒前
runtang完成签到,获得积分10
10秒前
Rachel完成签到 ,获得积分10
10秒前
科研大圣完成签到,获得积分10
12秒前
12秒前
1821977451发布了新的文献求助10
12秒前
276860发布了新的文献求助10
13秒前
14秒前
14秒前
14秒前
kingwws完成签到,获得积分20
15秒前
光亮的太阳完成签到,获得积分10
15秒前
15秒前
16秒前
阳光过客发布了新的文献求助10
17秒前
CG2021发布了新的文献求助10
17秒前
17秒前
Amaretto1412完成签到,获得积分10
18秒前
C洛7完成签到,获得积分10
18秒前
ylyao发布了新的文献求助10
19秒前
Lucas应助未相遇的辣条采纳,获得10
19秒前
如来完成签到,获得积分20
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3309117
求助须知:如何正确求助?哪些是违规求助? 2942485
关于积分的说明 8509235
捐赠科研通 2617584
什么是DOI,文献DOI怎么找? 1430190
科研通“疑难数据库(出版商)”最低求助积分说明 664086
邀请新用户注册赠送积分活动 649251