A proof of concept of a machine learning algorithm to predict late-onset 21-hydroxylase deficiency in children with premature pubic hair

先天性肾上腺增生 促肾上腺皮质激素 骨龄 基础(医学) 算法 内科学 医学 内分泌学 多元统计 多元分析 机器学习 儿科 激素 数学 计算机科学 胰岛素
作者
Héléna Agnani,Guillaume Bachelot,Thibaut Eguether,Bettina Ribault,Jean Fiet,Yves Le Bouc,Irène Netchine,Muriel Houang,Antonin Lamazière
出处
期刊:The Journal of Steroid Biochemistry and Molecular Biology [Elsevier]
卷期号:220: 106085-106085 被引量:7
标识
DOI:10.1016/j.jsbmb.2022.106085
摘要

In children with premature pubarche (PP), late onset 21-hydroxylase deficiency (21-OHD), also known as non-classical congenital adrenal hyperplasia (NCCAH), can be routinely ruled out by an adrenocorticotropic hormone (ACTH) test. Using liquid chromatography-tandem mass spectrometry (LC-MS/MS), a quantitative assay of the circulating steroidome can be obtained from a single blood sample. We hypothesized that, by applying multivariate machine learning (ML) models to basal steroid profiles and clinical parameters of 97 patients, we could distinguish children with PP from those with NCCAH, without the need for ACTH testing. Every child presenting with PP at the Trousseau Pediatric Endocrinology Unit between 2016 and 2018 had a basal and stimulated steroidome. Patients with central precocious puberty were excluded. The first set of patients (year 1, training set, n = 58), including 8 children with NCCAH verified by ACTH test and genetic analysis, was used to train the model. Subsequently, a validation set of an additional set of patients (year 2, n = 39 with 5 NCCAH) was obtained to validate our model. We designed a score based on an ML approach (orthogonal partial least squares discriminant analysis). A metabolic footprint was assigned for each patient using clinical data, bone age, and adrenal steroid levels recorded by LC-MS/MS. Supervised multivariate analysis of the training set (year 1) and validation set (year 2) was used to validate our score. Based on selected variables, the prediction score was accurate (100%) at differentiating premature pubarche from late onset 21-OHD patients. The most significant variables were 21-deoxycorticosterone, 17-hydroxyprogesterone, and 21-deoxycortisol steroids. We proposed a new test that has excellent sensitivity and specificity for the diagnosis of NCCAH, due to an ML approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
猫猫爱吃煎饼完成签到 ,获得积分10
刚刚
儒雅白山发布了新的文献求助10
刚刚
刚刚
Hello应助飞飞888采纳,获得10
刚刚
jackeyYuu发布了新的文献求助30
1秒前
欲尘清风完成签到,获得积分10
1秒前
1秒前
1秒前
1秒前
together完成签到,获得积分10
2秒前
火星上的冬云完成签到,获得积分10
2秒前
2秒前
LTB发布了新的文献求助10
2秒前
小泰勒横着走完成签到,获得积分10
2秒前
星禾吾应助桃源theshy采纳,获得10
2秒前
自信之卉发布了新的文献求助10
2秒前
Amber发布了新的文献求助10
3秒前
3秒前
田様应助章传杰采纳,获得10
3秒前
罗宏亮完成签到,获得积分10
3秒前
4秒前
4秒前
Jasper应助浪里白条采纳,获得10
5秒前
酷酷从凝发布了新的文献求助10
5秒前
无奈沛白完成签到,获得积分10
5秒前
Criminology34应助圆圆的波仔采纳,获得10
5秒前
ccc关闭了ccc文献求助
5秒前
柯南嘉尔发布了新的文献求助20
6秒前
量子星尘发布了新的文献求助10
6秒前
大模型应助翁嘉艺采纳,获得30
6秒前
果果发布了新的文献求助20
6秒前
7秒前
7秒前
深情安青应助我就是KKKK采纳,获得10
7秒前
8秒前
LTB完成签到,获得积分10
8秒前
天天快乐应助叶长安采纳,获得30
9秒前
量子星尘发布了新的文献求助10
9秒前
CodeCraft应助Boro采纳,获得10
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5710379
求助须知:如何正确求助?哪些是违规求助? 5199013
关于积分的说明 15260454
捐赠科研通 4863009
什么是DOI,文献DOI怎么找? 2610375
邀请新用户注册赠送积分活动 1560754
关于科研通互助平台的介绍 1518381