Machine Learning Approach to Stratifying Prognosis Relative to Tumor Burden after Resection of Colorectal Liver Metastases: An International Cohort Analysis.

四分位间距 医学 队列 内科学 总体生存率 肿瘤科 肝切除术 放射科
作者
Alessandro Paro,Madison J Hyer,Diamantis I Tsilimigras,Alfredo Guglielmi,Andrea Ruzzenente,Sorin Alexandrescu,George Poultsides,Federico Aucejo,Jordan M Cloyd,Timothy M Pawlik
出处
期刊:Journal of The American College of Surgeons [Lippincott Williams & Wilkins]
卷期号:234 (4): 504-513
标识
DOI:10.1097/xcs.0000000000000094
摘要

Assessing overall tumor burden on the basis of tumor number and size may assist in prognostic stratification of patients after resection of colorectal liver metastases (CRLM). We sought to define the prognostic accuracy of tumor burden by using machine learning (ML) algorithms compared with other commonly used prognostic scoring systems.Patients who underwent hepatectomy for CRLM between 2001 and 2018 were identified from a multi-institutional database and split into training and validation cohorts. ML was used to define tumor burden (ML-TB) based on CRLM tumor number and size thresholds associated with 5-year overall survival. Prognostic ability of ML-TB was compared with the Fong and Genetic and Morphological Evaluation scores using Cohen's d.Among 1,344 patients who underwent resection of CRLM, median tumor number (2, interquartile range 1 to 3) and size (3 cm, interquartile range 2.0 to 5.0) were comparable in the training (n = 672) vs validation (n = 672) cohorts; patient age (training 60.8 vs validation 61.0) and preoperative CEA (training 10.2 ng/mL vs validation 8.3 ng/mL) was also similar (p > 0.05). ML empirically derived optimal cutoff thresholds for number of lesions (3) and size of the largest lesion (1.3 cm) in the training cohort, which were then used to categorize patients in the validation cohort into 3 prognostic groups. Patients with low, average, or high ML-TB had markedly different 5-year overall survival (51.6%, 40.9%, and 23.1%, respectively; p < 0.001). ML-TB was more effective at stratifying patients relative to 5-year overall survival (low vs high ML-TB, d = 2.73) vs the Fong clinical (d = 1.61) or Genetic and Morphological Evaluation (d = 0.84) scores.Using a large international cohort, ML was able to stratify patients into 3 distinct prognostic categories based on overall tumor burden. ML-TB was noted to be superior to other CRLM prognostic scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
科研通AI5应助饼藏采纳,获得10
1秒前
耿耿星河发布了新的文献求助10
2秒前
完美世界应助清歌浊酒采纳,获得10
3秒前
5秒前
禤X完成签到 ,获得积分10
5秒前
5秒前
北木完成签到,获得积分10
5秒前
英姑应助大吱吱采纳,获得10
6秒前
Letter发布了新的文献求助10
7秒前
Vanessa完成签到,获得积分10
7秒前
7秒前
8秒前
宝宝慧儿7发布了新的文献求助10
10秒前
Jasper应助科研通管家采纳,获得10
11秒前
hgsgeospan完成签到,获得积分10
11秒前
Ava应助科研通管家采纳,获得10
11秒前
eirwyn发布了新的文献求助10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
上官若男应助科研通管家采纳,获得10
11秒前
猪猪hero应助科研通管家采纳,获得10
11秒前
小天应助科研通管家采纳,获得10
11秒前
Jasper应助科研通管家采纳,获得10
12秒前
猪猪hero应助科研通管家采纳,获得10
12秒前
orixero应助科研通管家采纳,获得10
12秒前
搜集达人应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
小天应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
123zyx完成签到 ,获得积分10
13秒前
13秒前
Akim应助迷路的墨镜采纳,获得10
14秒前
14秒前
CodeCraft应助xusuizi采纳,获得10
15秒前
15秒前
朴实雨竹发布了新的文献求助10
15秒前
甜蜜发带完成签到 ,获得积分0
16秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3967841
求助须知:如何正确求助?哪些是违规求助? 3512958
关于积分的说明 11165751
捐赠科研通 3248019
什么是DOI,文献DOI怎么找? 1794087
邀请新用户注册赠送积分活动 874843
科研通“疑难数据库(出版商)”最低求助积分说明 804578