Machine Learning Approach to Stratifying Prognosis Relative to Tumor Burden after Resection of Colorectal Liver Metastases: An International Cohort Analysis.

四分位间距 医学 队列 内科学 总体生存率 肿瘤科 肝切除术 放射科
作者
Alessandro Paro,Madison J Hyer,Diamantis I Tsilimigras,Alfredo Guglielmi,Andrea Ruzzenente,Sorin Alexandrescu,George Poultsides,Federico Aucejo,Jordan M Cloyd,Timothy M Pawlik
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (4): 504-513
标识
DOI:10.1097/xcs.0000000000000094
摘要

Assessing overall tumor burden on the basis of tumor number and size may assist in prognostic stratification of patients after resection of colorectal liver metastases (CRLM). We sought to define the prognostic accuracy of tumor burden by using machine learning (ML) algorithms compared with other commonly used prognostic scoring systems.Patients who underwent hepatectomy for CRLM between 2001 and 2018 were identified from a multi-institutional database and split into training and validation cohorts. ML was used to define tumor burden (ML-TB) based on CRLM tumor number and size thresholds associated with 5-year overall survival. Prognostic ability of ML-TB was compared with the Fong and Genetic and Morphological Evaluation scores using Cohen's d.Among 1,344 patients who underwent resection of CRLM, median tumor number (2, interquartile range 1 to 3) and size (3 cm, interquartile range 2.0 to 5.0) were comparable in the training (n = 672) vs validation (n = 672) cohorts; patient age (training 60.8 vs validation 61.0) and preoperative CEA (training 10.2 ng/mL vs validation 8.3 ng/mL) was also similar (p > 0.05). ML empirically derived optimal cutoff thresholds for number of lesions (3) and size of the largest lesion (1.3 cm) in the training cohort, which were then used to categorize patients in the validation cohort into 3 prognostic groups. Patients with low, average, or high ML-TB had markedly different 5-year overall survival (51.6%, 40.9%, and 23.1%, respectively; p < 0.001). ML-TB was more effective at stratifying patients relative to 5-year overall survival (low vs high ML-TB, d = 2.73) vs the Fong clinical (d = 1.61) or Genetic and Morphological Evaluation (d = 0.84) scores.Using a large international cohort, ML was able to stratify patients into 3 distinct prognostic categories based on overall tumor burden. ML-TB was noted to be superior to other CRLM prognostic scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Katsura完成签到,获得积分20
刚刚
淡定夕阳完成签到,获得积分10
1秒前
木木发布了新的文献求助10
1秒前
1秒前
1秒前
martina完成签到,获得积分10
2秒前
blueblue完成签到,获得积分20
3秒前
ffff发布了新的文献求助10
4秒前
安然完成签到,获得积分10
5秒前
能干的诗筠完成签到 ,获得积分10
5秒前
咖啡豆应助晚风吹起来采纳,获得20
6秒前
NexusExplorer应助哭泣大米采纳,获得10
7秒前
8秒前
都是发布了新的文献求助10
8秒前
10秒前
11秒前
清脆的涔发布了新的文献求助10
14秒前
14秒前
夏伊发布了新的文献求助10
14秒前
包谷冬完成签到 ,获得积分0
15秒前
15秒前
科研小驴发布了新的文献求助10
16秒前
丘比特应助冬瓜有内涵呐采纳,获得10
17秒前
xie老板完成签到,获得积分10
20秒前
yoru16发布了新的文献求助10
21秒前
21秒前
22秒前
margine完成签到,获得积分10
22秒前
自觉的草丛完成签到,获得积分10
23秒前
柔弱狗完成签到,获得积分10
24秒前
我是老大应助xie老板采纳,获得10
24秒前
25秒前
高大冷菱完成签到 ,获得积分10
25秒前
vincentbioinfo完成签到,获得积分10
26秒前
26秒前
小鸡学习发布了新的文献求助10
26秒前
28秒前
宋江他大表哥完成签到,获得积分10
28秒前
wang发布了新的文献求助10
29秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141175
求助须知:如何正确求助?哪些是违规求助? 2792145
关于积分的说明 7801676
捐赠科研通 2448353
什么是DOI,文献DOI怎么找? 1302516
科研通“疑难数据库(出版商)”最低求助积分说明 626613
版权声明 601237