Machine Learning Approach to Stratifying Prognosis Relative to Tumor Burden after Resection of Colorectal Liver Metastases: An International Cohort Analysis.

四分位间距 医学 队列 内科学 总体生存率 肿瘤科 肝切除术 放射科
作者
Alessandro Paro,Madison J Hyer,Diamantis I Tsilimigras,Alfredo Guglielmi,Andrea Ruzzenente,Sorin Alexandrescu,George Poultsides,Federico Aucejo,Jordan M Cloyd,Timothy M Pawlik
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (4): 504-513
标识
DOI:10.1097/xcs.0000000000000094
摘要

Assessing overall tumor burden on the basis of tumor number and size may assist in prognostic stratification of patients after resection of colorectal liver metastases (CRLM). We sought to define the prognostic accuracy of tumor burden by using machine learning (ML) algorithms compared with other commonly used prognostic scoring systems.Patients who underwent hepatectomy for CRLM between 2001 and 2018 were identified from a multi-institutional database and split into training and validation cohorts. ML was used to define tumor burden (ML-TB) based on CRLM tumor number and size thresholds associated with 5-year overall survival. Prognostic ability of ML-TB was compared with the Fong and Genetic and Morphological Evaluation scores using Cohen's d.Among 1,344 patients who underwent resection of CRLM, median tumor number (2, interquartile range 1 to 3) and size (3 cm, interquartile range 2.0 to 5.0) were comparable in the training (n = 672) vs validation (n = 672) cohorts; patient age (training 60.8 vs validation 61.0) and preoperative CEA (training 10.2 ng/mL vs validation 8.3 ng/mL) was also similar (p > 0.05). ML empirically derived optimal cutoff thresholds for number of lesions (3) and size of the largest lesion (1.3 cm) in the training cohort, which were then used to categorize patients in the validation cohort into 3 prognostic groups. Patients with low, average, or high ML-TB had markedly different 5-year overall survival (51.6%, 40.9%, and 23.1%, respectively; p < 0.001). ML-TB was more effective at stratifying patients relative to 5-year overall survival (low vs high ML-TB, d = 2.73) vs the Fong clinical (d = 1.61) or Genetic and Morphological Evaluation (d = 0.84) scores.Using a large international cohort, ML was able to stratify patients into 3 distinct prognostic categories based on overall tumor burden. ML-TB was noted to be superior to other CRLM prognostic scoring systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
完美世界应助小萌采纳,获得10
1秒前
1秒前
gaoww完成签到,获得积分10
1秒前
2秒前
WZ0904发布了新的文献求助10
2秒前
2秒前
lab完成签到 ,获得积分0
2秒前
小蘑菇应助今今采纳,获得10
3秒前
CodeCraft应助秋之月采纳,获得10
3秒前
I1waml完成签到 ,获得积分10
3秒前
3秒前
guygun完成签到,获得积分10
3秒前
zho发布了新的文献求助10
4秒前
独特亦旋发布了新的文献求助10
4秒前
5秒前
研友_LOqqmZ完成签到,获得积分10
6秒前
6秒前
英俊的铭应助文献查找采纳,获得10
6秒前
solobang发布了新的文献求助10
6秒前
Jasper应助老迟到的书雁采纳,获得10
9秒前
orixero应助小二采纳,获得10
9秒前
10秒前
10秒前
simple完成签到,获得积分10
10秒前
caoyy发布了新的文献求助10
10秒前
赵小可可可可完成签到,获得积分10
12秒前
小萌发布了新的文献求助10
13秒前
weiv发布了新的文献求助10
13秒前
海科科发布了新的文献求助10
14秒前
陌上花完成签到,获得积分10
14秒前
我是站长才怪应助微笑襄采纳,获得10
15秒前
caoyy完成签到,获得积分10
16秒前
JamesPei应助独特亦旋采纳,获得10
17秒前
18秒前
18秒前
科目三应助Jenny采纳,获得50
20秒前
gry发布了新的文献求助10
21秒前
Hh发布了新的文献求助10
23秒前
Jzhang应助daniel采纳,获得10
23秒前
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527990
求助须知:如何正确求助?哪些是违规求助? 3108173
关于积分的说明 9287913
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540119
邀请新用户注册赠送积分活动 716941
科研通“疑难数据库(出版商)”最低求助积分说明 709824