Machine Learning Approach to Stratifying Prognosis Relative to Tumor Burden after Resection of Colorectal Liver Metastases: An International Cohort Analysis.

四分位间距 医学 队列 内科学 总体生存率 肿瘤科 肝切除术 放射科
作者
Alessandro Paro,Madison J Hyer,Diamantis I Tsilimigras,Alfredo Guglielmi,Andrea Ruzzenente,Sorin Alexandrescu,George Poultsides,Federico Aucejo,Jordan M Cloyd,Timothy M Pawlik
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (4): 504-513
标识
DOI:10.1097/xcs.0000000000000094
摘要

Assessing overall tumor burden on the basis of tumor number and size may assist in prognostic stratification of patients after resection of colorectal liver metastases (CRLM). We sought to define the prognostic accuracy of tumor burden by using machine learning (ML) algorithms compared with other commonly used prognostic scoring systems.Patients who underwent hepatectomy for CRLM between 2001 and 2018 were identified from a multi-institutional database and split into training and validation cohorts. ML was used to define tumor burden (ML-TB) based on CRLM tumor number and size thresholds associated with 5-year overall survival. Prognostic ability of ML-TB was compared with the Fong and Genetic and Morphological Evaluation scores using Cohen's d.Among 1,344 patients who underwent resection of CRLM, median tumor number (2, interquartile range 1 to 3) and size (3 cm, interquartile range 2.0 to 5.0) were comparable in the training (n = 672) vs validation (n = 672) cohorts; patient age (training 60.8 vs validation 61.0) and preoperative CEA (training 10.2 ng/mL vs validation 8.3 ng/mL) was also similar (p > 0.05). ML empirically derived optimal cutoff thresholds for number of lesions (3) and size of the largest lesion (1.3 cm) in the training cohort, which were then used to categorize patients in the validation cohort into 3 prognostic groups. Patients with low, average, or high ML-TB had markedly different 5-year overall survival (51.6%, 40.9%, and 23.1%, respectively; p < 0.001). ML-TB was more effective at stratifying patients relative to 5-year overall survival (low vs high ML-TB, d = 2.73) vs the Fong clinical (d = 1.61) or Genetic and Morphological Evaluation (d = 0.84) scores.Using a large international cohort, ML was able to stratify patients into 3 distinct prognostic categories based on overall tumor burden. ML-TB was noted to be superior to other CRLM prognostic scoring systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dailj完成签到,获得积分20
刚刚
lixiao完成签到,获得积分10
1秒前
asdfzxcv应助triwinster采纳,获得10
2秒前
幻化发布了新的文献求助10
2秒前
2秒前
黄颖发布了新的文献求助30
4秒前
4秒前
4秒前
南湖秋水发布了新的文献求助10
6秒前
大蒜味酸奶钊完成签到 ,获得积分10
7秒前
8秒前
9秒前
9秒前
幻化完成签到,获得积分10
10秒前
10秒前
11秒前
12秒前
Ray完成签到,获得积分10
12秒前
perfect完成签到 ,获得积分10
13秒前
zoeydonut发布了新的文献求助10
13秒前
dd完成签到,获得积分10
14秒前
Sunny完成签到,获得积分10
15秒前
量子星尘发布了新的文献求助10
15秒前
Glufo发布了新的文献求助10
15秒前
直率的惮完成签到 ,获得积分10
15秒前
kimoki发布了新的文献求助10
17秒前
17秒前
lyon完成签到,获得积分10
17秒前
19秒前
lpp_完成签到 ,获得积分10
19秒前
19秒前
Criminology34应助dd采纳,获得10
19秒前
19秒前
20秒前
Sweety-完成签到,获得积分10
20秒前
龙龙ff11_完成签到,获得积分10
21秒前
读二白完成签到,获得积分10
21秒前
ZZQ发布了新的文献求助10
21秒前
宴究生发布了新的文献求助10
22秒前
Amberless发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5641841
求助须知:如何正确求助?哪些是违规求助? 4757370
关于积分的说明 15014933
捐赠科研通 4800251
什么是DOI,文献DOI怎么找? 2565964
邀请新用户注册赠送积分活动 1524113
关于科研通互助平台的介绍 1483776