Machine Learning Approach to Stratifying Prognosis Relative to Tumor Burden after Resection of Colorectal Liver Metastases: An International Cohort Analysis.

四分位间距 医学 队列 内科学 总体生存率 肿瘤科 肝切除术 放射科
作者
Alessandro Paro,Madison J Hyer,Diamantis I Tsilimigras,Alfredo Guglielmi,Andrea Ruzzenente,Sorin Alexandrescu,George Poultsides,Federico Aucejo,Jordan M Cloyd,Timothy M Pawlik
出处
期刊:Journal of The American College of Surgeons [Elsevier]
卷期号:234 (4): 504-513
标识
DOI:10.1097/xcs.0000000000000094
摘要

Assessing overall tumor burden on the basis of tumor number and size may assist in prognostic stratification of patients after resection of colorectal liver metastases (CRLM). We sought to define the prognostic accuracy of tumor burden by using machine learning (ML) algorithms compared with other commonly used prognostic scoring systems.Patients who underwent hepatectomy for CRLM between 2001 and 2018 were identified from a multi-institutional database and split into training and validation cohorts. ML was used to define tumor burden (ML-TB) based on CRLM tumor number and size thresholds associated with 5-year overall survival. Prognostic ability of ML-TB was compared with the Fong and Genetic and Morphological Evaluation scores using Cohen's d.Among 1,344 patients who underwent resection of CRLM, median tumor number (2, interquartile range 1 to 3) and size (3 cm, interquartile range 2.0 to 5.0) were comparable in the training (n = 672) vs validation (n = 672) cohorts; patient age (training 60.8 vs validation 61.0) and preoperative CEA (training 10.2 ng/mL vs validation 8.3 ng/mL) was also similar (p > 0.05). ML empirically derived optimal cutoff thresholds for number of lesions (3) and size of the largest lesion (1.3 cm) in the training cohort, which were then used to categorize patients in the validation cohort into 3 prognostic groups. Patients with low, average, or high ML-TB had markedly different 5-year overall survival (51.6%, 40.9%, and 23.1%, respectively; p < 0.001). ML-TB was more effective at stratifying patients relative to 5-year overall survival (low vs high ML-TB, d = 2.73) vs the Fong clinical (d = 1.61) or Genetic and Morphological Evaluation (d = 0.84) scores.Using a large international cohort, ML was able to stratify patients into 3 distinct prognostic categories based on overall tumor burden. ML-TB was noted to be superior to other CRLM prognostic scoring systems.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
1秒前
樱桃汽水怪兽完成签到,获得积分10
1秒前
11完成签到,获得积分10
2秒前
李健应助严三笑采纳,获得10
3秒前
陈啦啦发布了新的文献求助10
4秒前
丘比特应助岑中归月采纳,获得10
4秒前
Jasper应助唐代斯采纳,获得10
5秒前
SQ_Liu完成签到,获得积分10
7秒前
高高的觅风完成签到,获得积分10
7秒前
壮观的远侵完成签到,获得积分10
8秒前
乐乐应助金金采纳,获得10
8秒前
量子星尘发布了新的文献求助10
9秒前
10秒前
陈啦啦完成签到,获得积分10
11秒前
门牙完成签到,获得积分10
13秒前
St发布了新的文献求助10
14秒前
dajiejie完成签到 ,获得积分10
14秒前
科目三应助fogsea采纳,获得10
14秒前
宪哥他哥发布了新的文献求助10
14秒前
Lucas应助陈琳采纳,获得10
15秒前
15秒前
酸酸乳完成签到 ,获得积分10
15秒前
北枳完成签到 ,获得积分0
17秒前
打打应助亮子纠缠采纳,获得10
18秒前
友好冷风完成签到,获得积分10
19秒前
好久不见发布了新的文献求助10
19秒前
完美世界应助酷炫觅松采纳,获得10
21秒前
wsd发布了新的文献求助10
21秒前
21秒前
21秒前
22秒前
22秒前
无极微光应助小狒狒采纳,获得20
24秒前
24秒前
St完成签到,获得积分10
25秒前
aaa发布了新的文献求助10
25秒前
陈琳发布了新的文献求助10
26秒前
沚沐发布了新的文献求助10
26秒前
26秒前
pickme发布了新的文献求助10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684791
求助须知:如何正确求助?哪些是违规求助? 5038954
关于积分的说明 15185395
捐赠科研通 4843938
什么是DOI,文献DOI怎么找? 2597034
邀请新用户注册赠送积分活动 1549618
关于科研通互助平台的介绍 1508109