钙钛矿(结构)
串联
材料科学
化学
化学工程
光化学
业务
纳米技术
光电子学
结晶学
复合材料
工程类
作者
Jize Wang,Han Li,Peng Gao,Yong Peng,Shaowen Cao,Markus Antonietti
标识
DOI:10.1016/j.cej.2022.136447
摘要
The efficient CO 2 photoreduction device with internal electric field is realized by introducing a layer tandem structure made up of g-C 3 N 4 and an inorganic lead-perovskite (CsPbBr 3 ). The device satisfies full artificial photosynthesis of CO 2 conversion and exhibits good stability. • The efficient CO 2 photoreduction device is constructed based on CsPbBr 3 perovskite. • Tandem structure of CsPbBr 3 /g-C 3 N 4 promotes directional charge-carrier migration. • The photo-CO yield rate is 238.7 μmol m -2 h −1 under a humid gaseous CO 2 system. The design of efficient photocatalytic devices is of great significance to achieve low-cost carbon dioxide reduction into solar fuels. Herein, directional charge-carrier migration is realized by introducing a CO 2 reduction device with a tandem structure made up of g-C 3 N 4 and an inorganic lead-perovskite (CsPbBr 3 ). This photocatalytic device shows a significantly increased CO 2 photoreduction rate in a humid gaseous CO 2 system when compared to the parental g-C 3 N 4 layer. This “full artificial photosynthesis” thereby generates fuel molecules and oxygen from water and CO 2, only, without any co-catalysts or sacrificial agents. To our surprise, the device maintains greater than 90% of the CO production yield after 5 days continuous irradiation. The existence of internal electric field is confirmed, which drive the directional movement of photogenerated charge-carriers with the perovskite being reductive, while the carbon nitride with its enormous oxidation stability is covering the oxidation processes. This represents a promising possibility for the practical application of CO 2 photoreduction with scalable devices.
科研通智能强力驱动
Strongly Powered by AbleSci AI