Investigating treatment-effect modification by a continuous covariate in IPD meta-analysis: an approach using fractional polynomials

协变量 随机对照试验 荟萃分析 医学 统计 乳腺癌 计算机科学 数学 癌症 内科学
作者
Willi Sauerbrei,Patrick Royston
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12874-022-01516-w
摘要

In clinical trials, there is considerable interest in investigating whether a treatment effect is similar in all patients, or that one or more prognostic variables indicate a differential response to treatment. To examine this, a continuous predictor is usually categorised into groups according to one or more cutpoints. Several weaknesses of categorization are well known. To avoid the disadvantages of cutpoints and to retain full information, it is preferable to keep continuous variables continuous in the analysis. To handle this issue, the Subpopulation Treatment Effect Pattern Plot (STEPP) was proposed about two decades ago, followed by the multivariable fractional polynomial interaction (MFPI) approach. Provided individual patient data (IPD) from several studies are available, it is possible to investigate for treatment heterogeneity with meta-analysis techniques. Meta-STEPP was recently proposed and in patients with primary breast cancer an interaction of estrogen receptors with chemotherapy was investigated in eight randomized controlled trials (RCTs).We use data from eight randomized controlled trials in breast cancer to illustrate issues from two main tasks. The first task is to derive a treatment effect function (TEF), that is, a measure of the treatment effect on the continuous scale of the covariate in the individual studies. The second is to conduct a meta-analysis of the continuous TEFs from the eight studies by applying pointwise averaging to obtain a mean function. We denote the method metaTEF. To improve reporting of available data and all steps of the analysis we introduce a three-part profile called MethProf-MA.Although there are considerable differences between the studies (populations with large differences in prognosis, sample size, effective sample size, length of follow up, proportion of patients with very low estrogen receptor values) our results provide clear evidence of an interaction, irrespective of the choice of the FP function and random or fixed effect models.In contrast to cutpoint-based analyses, metaTEF retains the full information from continuous covariates and avoids several critical issues when performing IPD meta-analyses of continuous effect modifiers in randomised trials. Early experience suggests it is a promising approach.Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小胖鱼发布了新的文献求助10
刚刚
dzdzn关注了科研通微信公众号
刚刚
共享精神应助Zhaorf采纳,获得10
1秒前
1秒前
1秒前
1秒前
2秒前
2秒前
peikyang发布了新的文献求助10
2秒前
藤原拓海完成签到,获得积分10
2秒前
π1完成签到 ,获得积分10
2秒前
zhangqi发布了新的文献求助10
2秒前
CCL应助wjj采纳,获得20
3秒前
3秒前
单于天宇完成签到,获得积分10
3秒前
3秒前
畅快的南风完成签到,获得积分10
4秒前
猪猪hero完成签到,获得积分10
4秒前
要减肥冰菱完成签到,获得积分10
4秒前
肖静茹完成签到,获得积分20
4秒前
情怀应助啾啾咪咪采纳,获得10
5秒前
奥里给完成签到 ,获得积分10
5秒前
DQ8733完成签到,获得积分10
5秒前
AAAAAAAAAAA发布了新的文献求助10
6秒前
6秒前
鱼与树发布了新的文献求助10
6秒前
sun完成签到,获得积分20
6秒前
lbw完成签到 ,获得积分10
7秒前
领导范儿应助朴素篮球采纳,获得10
7秒前
小刘不笨发布了新的文献求助10
7秒前
7秒前
大方的雪曼完成签到,获得积分10
7秒前
詭詐应助西洲采纳,获得10
7秒前
8秒前
zhangting发布了新的文献求助10
8秒前
玉9989完成签到,获得积分20
8秒前
大方小白发布了新的文献求助10
8秒前
xiaowang完成签到,获得积分10
8秒前
123完成签到,获得积分10
8秒前
轩辕德地发布了新的文献求助10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678