Investigating treatment-effect modification by a continuous covariate in IPD meta-analysis: an approach using fractional polynomials

协变量 随机对照试验 荟萃分析 医学 统计 乳腺癌 计算机科学 数学 癌症 内科学
作者
Willi Sauerbrei,Patrick Royston
出处
期刊:BMC Medical Research Methodology [Springer Nature]
卷期号:22 (1) 被引量:2
标识
DOI:10.1186/s12874-022-01516-w
摘要

In clinical trials, there is considerable interest in investigating whether a treatment effect is similar in all patients, or that one or more prognostic variables indicate a differential response to treatment. To examine this, a continuous predictor is usually categorised into groups according to one or more cutpoints. Several weaknesses of categorization are well known. To avoid the disadvantages of cutpoints and to retain full information, it is preferable to keep continuous variables continuous in the analysis. To handle this issue, the Subpopulation Treatment Effect Pattern Plot (STEPP) was proposed about two decades ago, followed by the multivariable fractional polynomial interaction (MFPI) approach. Provided individual patient data (IPD) from several studies are available, it is possible to investigate for treatment heterogeneity with meta-analysis techniques. Meta-STEPP was recently proposed and in patients with primary breast cancer an interaction of estrogen receptors with chemotherapy was investigated in eight randomized controlled trials (RCTs).We use data from eight randomized controlled trials in breast cancer to illustrate issues from two main tasks. The first task is to derive a treatment effect function (TEF), that is, a measure of the treatment effect on the continuous scale of the covariate in the individual studies. The second is to conduct a meta-analysis of the continuous TEFs from the eight studies by applying pointwise averaging to obtain a mean function. We denote the method metaTEF. To improve reporting of available data and all steps of the analysis we introduce a three-part profile called MethProf-MA.Although there are considerable differences between the studies (populations with large differences in prognosis, sample size, effective sample size, length of follow up, proportion of patients with very low estrogen receptor values) our results provide clear evidence of an interaction, irrespective of the choice of the FP function and random or fixed effect models.In contrast to cutpoint-based analyses, metaTEF retains the full information from continuous covariates and avoids several critical issues when performing IPD meta-analyses of continuous effect modifiers in randomised trials. Early experience suggests it is a promising approach.Not applicable.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
freshman3005发布了新的文献求助30
1秒前
1秒前
2秒前
调研昵称发布了新的文献求助10
2秒前
lizzzzzz发布了新的文献求助10
3秒前
方方公主发布了新的文献求助10
3秒前
柠小檬c完成签到,获得积分10
3秒前
4秒前
脑洞疼应助ZhouTY采纳,获得10
5秒前
5秒前
5秒前
puyehwu完成签到,获得积分10
6秒前
科研通AI2S应助呆萌千凝采纳,获得10
7秒前
elaine完成签到,获得积分10
7秒前
7秒前
哔哔应助viahit采纳,获得10
8秒前
赵哥发布了新的文献求助10
8秒前
酱圤完成签到,获得积分10
8秒前
9秒前
慕青应助苯二氮卓采纳,获得10
9秒前
9秒前
11秒前
三月肖完成签到,获得积分10
11秒前
11秒前
zz发布了新的文献求助10
12秒前
v1008完成签到,获得积分10
13秒前
隐形曼青应助Y哦莫哦莫采纳,获得10
13秒前
褚香旋完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
人类之光完成签到,获得积分10
16秒前
qqqq完成签到,获得积分10
16秒前
兔兔跑路完成签到,获得积分10
16秒前
17秒前
17秒前
xiaobao发布了新的文献求助10
17秒前
freshman3005完成签到,获得积分10
17秒前
今日发布了新的文献求助10
17秒前
无花果应助十四吉采纳,获得10
18秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
Advanced Issues in Partial Least Squares Structural Equation Modeling (Second Edition) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419