Development and Validation of Machine Learning Models for Predicting Occult Nodal Metastasis in Early-Stage Oral Cavity Squamous Cell Carcinoma

医学 神秘的 淋巴血管侵犯 转移 颈淋巴结清扫术 阶段(地层学) 解剖(医学) 体质指数 放射科 外科 内科学 癌症 病理 生物 古生物学 替代医学
作者
Nathan Farrokhian,Andrew J. Holcomb,Erin Dimon,Omar A. Karadaghy,Christina Ward,Erin Whiteford,Claire Tolan,Elyse K. Hanly,Marisa R. Buchakjian,Brette C. Harding,Laura Dooley,Justin R. Shinn,C. Burton Wood,Sarah L. Rohde,Kevin Y. Zhan,Anuraag S. Parikh,Mustafa G. Bulbul,Joseph Penn,Sara Goodwin,Andrés M. Bur
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (4): e227226-e227226 被引量:14
标识
DOI:10.1001/jamanetworkopen.2022.7226
摘要

Importance

Given that early-stage oral cavity squamous cell carcinoma (OCSCC) has a high propensity for subclinical nodal metastasis, elective neck dissection has become standard practice for many patients with clinically negative nodes. Unfortunately, for most patients without regional metastasis, this risk-averse treatment paradigm results in unnecessary morbidity.

Objectives

To develop and validate predictive models of occult nodal metastasis from clinicopathological variables that were available after surgical extirpation of the primary tumor and to compare predictive performance against depth of invasion (DOI), the currently accepted standard.

Design, Setting, and Participants

This diagnostic modeling study collected clinicopathological variables retrospectively from 7 tertiary care academic medical centers across the US. Participants included adult patients with early-stage OCSCC without nodal involvement who underwent primary surgical extirpation with or without upfront elective neck dissection. These patients were initially evaluated between January 1, 2000, and December 31, 2019.

Exposures

Largest tumor dimension, tumor thickness, DOI, margin status, lymphovascular invasion, perineural invasion, muscle invasion, submucosal invasion, dysplasia, histological grade, anatomical subsite, age, sex, smoking history, race and ethnicity, and body mass index (calculated as weight in kilograms divided by height in meters squared).

Main Outcomes and Measures

Occult nodal metastasis identified either at the time of elective neck dissection or regional recurrence within 2 years of initial surgery.

Results

Of the 634 included patients (mean [SD] age, 61.2 [13.6] years; 344 men [54.3%]), 114 (18.0%) had occult nodal metastasis. Patients with occult nodal metastasis had a higher frequency of lymphovascular invasion (26.3% vs 8.1%;P < .001), perineural invasion (40.4% vs 18.5%;P < .001), and margin involvement by invasive tumor (12.3% vs 6.3%;P = .046) compared with those without pathological lymph node metastasis. In addition, patients with vs those without occult nodal metastasis had a higher frequency of poorly differentiated primary tumor (20.2% vs 6.2%;P < .001) and greater DOI (7.0 vs 5.4 mm;P < .001). A predictive model that was built with XGBoost architecture outperformed the commonly used DOI threshold of 4 mm, achieving an area under the curve of 0.84 (95% CI, 0.80-0.88) vs 0.62 (95% CI, 0.57-0.67) with DOI. This model had a sensitivity of 91.7%, specificity of 72.6%, positive predictive value of 39.3%, and negative predictive value of 97.8%.

Conclusions and Relevance

Results of this study showed that machine learning models that were developed from multi-institutional clinicopathological data have the potential to not only reduce the number of pathologically node-negative neck dissections but also accurately identify patients with early OCSCC who are at highest risk for nodal metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Ava应助冷酷指甲油采纳,获得10
1秒前
充电宝应助风中的丝袜采纳,获得30
14秒前
mrwang完成签到 ,获得积分10
15秒前
笨笨忘幽完成签到,获得积分10
17秒前
饱满烙完成签到 ,获得积分10
19秒前
北笙完成签到 ,获得积分10
29秒前
应夏山完成签到 ,获得积分10
35秒前
CLTTT完成签到,获得积分10
35秒前
崩溃完成签到,获得积分10
40秒前
simu233完成签到,获得积分10
41秒前
suepisode完成签到 ,获得积分10
42秒前
43秒前
风秋杨完成签到 ,获得积分10
45秒前
cdercder完成签到,获得积分10
48秒前
嗯好22222完成签到 ,获得积分10
1分钟前
1分钟前
雪花完成签到 ,获得积分10
1分钟前
1分钟前
喵了个咪完成签到 ,获得积分10
1分钟前
harden9159完成签到,获得积分10
1分钟前
1分钟前
Avicii完成签到 ,获得积分10
1分钟前
cdercder应助冷酷指甲油采纳,获得10
1分钟前
dora332211完成签到 ,获得积分10
1分钟前
卡卡完成签到,获得积分10
1分钟前
居居侠完成签到 ,获得积分10
1分钟前
蓝天小小鹰完成签到 ,获得积分10
1分钟前
钟声完成签到,获得积分0
2分钟前
DNAdamage完成签到,获得积分10
2分钟前
大个应助Liyipu采纳,获得10
2分钟前
暗号完成签到 ,获得积分10
2分钟前
一张不够花完成签到 ,获得积分10
2分钟前
2分钟前
Liyipu完成签到,获得积分10
2分钟前
Liyipu发布了新的文献求助10
2分钟前
文与武完成签到 ,获得积分10
2分钟前
2分钟前
himat完成签到,获得积分10
2分钟前
Liangstar完成签到 ,获得积分10
2分钟前
xiw完成签到,获得积分10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 950
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Product Class 33: N-Arylhydroxylamines 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3388511
求助须知:如何正确求助?哪些是违规求助? 3000831
关于积分的说明 8793885
捐赠科研通 2687017
什么是DOI,文献DOI怎么找? 1471978
科研通“疑难数据库(出版商)”最低求助积分说明 680675
邀请新用户注册赠送积分活动 673317