Development and Validation of Machine Learning Models for Predicting Occult Nodal Metastasis in Early-Stage Oral Cavity Squamous Cell Carcinoma

医学 神秘的 淋巴血管侵犯 转移 颈淋巴结清扫术 阶段(地层学) 解剖(医学) 体质指数 放射科 外科 内科学 癌症 病理 生物 古生物学 替代医学
作者
Nathan Farrokhian,Andrew J. Holcomb,Erin Dimon,Omar A. Karadaghy,Christina Ward,Erin Whiteford,Claire Tolan,Elyse K. Hanly,Marisa R. Buchakjian,Brette C. Harding,Laura Dooley,Justin R. Shinn,C. Burton Wood,Sarah L. Rohde,Kevin Y. Zhan,Anuraag S. Parikh,Mustafa G. Bulbul,Joseph Penn,Sara Goodwin,Andrés M. Bur
出处
期刊:JAMA network open [American Medical Association]
卷期号:5 (4): e227226-e227226 被引量:14
标识
DOI:10.1001/jamanetworkopen.2022.7226
摘要

Importance

Given that early-stage oral cavity squamous cell carcinoma (OCSCC) has a high propensity for subclinical nodal metastasis, elective neck dissection has become standard practice for many patients with clinically negative nodes. Unfortunately, for most patients without regional metastasis, this risk-averse treatment paradigm results in unnecessary morbidity.

Objectives

To develop and validate predictive models of occult nodal metastasis from clinicopathological variables that were available after surgical extirpation of the primary tumor and to compare predictive performance against depth of invasion (DOI), the currently accepted standard.

Design, Setting, and Participants

This diagnostic modeling study collected clinicopathological variables retrospectively from 7 tertiary care academic medical centers across the US. Participants included adult patients with early-stage OCSCC without nodal involvement who underwent primary surgical extirpation with or without upfront elective neck dissection. These patients were initially evaluated between January 1, 2000, and December 31, 2019.

Exposures

Largest tumor dimension, tumor thickness, DOI, margin status, lymphovascular invasion, perineural invasion, muscle invasion, submucosal invasion, dysplasia, histological grade, anatomical subsite, age, sex, smoking history, race and ethnicity, and body mass index (calculated as weight in kilograms divided by height in meters squared).

Main Outcomes and Measures

Occult nodal metastasis identified either at the time of elective neck dissection or regional recurrence within 2 years of initial surgery.

Results

Of the 634 included patients (mean [SD] age, 61.2 [13.6] years; 344 men [54.3%]), 114 (18.0%) had occult nodal metastasis. Patients with occult nodal metastasis had a higher frequency of lymphovascular invasion (26.3% vs 8.1%;P < .001), perineural invasion (40.4% vs 18.5%;P < .001), and margin involvement by invasive tumor (12.3% vs 6.3%;P = .046) compared with those without pathological lymph node metastasis. In addition, patients with vs those without occult nodal metastasis had a higher frequency of poorly differentiated primary tumor (20.2% vs 6.2%;P < .001) and greater DOI (7.0 vs 5.4 mm;P < .001). A predictive model that was built with XGBoost architecture outperformed the commonly used DOI threshold of 4 mm, achieving an area under the curve of 0.84 (95% CI, 0.80-0.88) vs 0.62 (95% CI, 0.57-0.67) with DOI. This model had a sensitivity of 91.7%, specificity of 72.6%, positive predictive value of 39.3%, and negative predictive value of 97.8%.

Conclusions and Relevance

Results of this study showed that machine learning models that were developed from multi-institutional clinicopathological data have the potential to not only reduce the number of pathologically node-negative neck dissections but also accurately identify patients with early OCSCC who are at highest risk for nodal metastases.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yu发布了新的文献求助10
1秒前
Hz发布了新的文献求助10
1秒前
小宇子发布了新的文献求助10
2秒前
2秒前
迷路旭完成签到,获得积分10
3秒前
4秒前
斌斌发布了新的文献求助30
5秒前
桥言完成签到,获得积分20
5秒前
6秒前
红警完成签到,获得积分10
6秒前
7秒前
夏侯初发布了新的文献求助10
8秒前
8秒前
齐静春完成签到,获得积分10
9秒前
11秒前
12秒前
木头马尾给小小高的求助进行了留言
12秒前
紫色奶萨完成签到,获得积分10
13秒前
懒得动完成签到,获得积分20
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
17秒前
nature预备军完成签到,获得积分10
17秒前
xiaoyeshuang发布了新的文献求助10
17秒前
桥言发布了新的文献求助10
19秒前
Takahara2000应助靓丽的怜雪采纳,获得10
22秒前
贾茗宇发布了新的文献求助10
22秒前
24秒前
大个应助科研通管家采纳,获得10
24秒前
浮游应助科研通管家采纳,获得10
24秒前
英姑应助科研通管家采纳,获得10
25秒前
乐乐应助科研通管家采纳,获得10
25秒前
科研通AI6应助科研通管家采纳,获得30
25秒前
李健应助科研通管家采纳,获得10
25秒前
小新应助科研通管家采纳,获得10
25秒前
Maestro_S应助科研通管家采纳,获得10
25秒前
英俊的铭应助科研通管家采纳,获得10
25秒前
NexusExplorer应助科研通管家采纳,获得10
25秒前
大个应助科研通管家采纳,获得10
26秒前
SciGPT应助科研通管家采纳,获得10
26秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
解放军总医院眼科医学部病例精解 1000
温州医科大学附属眼视光医院斜弱视与双眼视病例精解 1000
Zur lokalen Geoidbestimmung aus terrestrischen Messungen vertikaler Schweregradienten 1000
translating meaning 500
Storie e culture della televisione 500
Selected research on camelid physiology and nutrition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4896145
求助须知:如何正确求助?哪些是违规求助? 4177840
关于积分的说明 12969394
捐赠科研通 3941069
什么是DOI,文献DOI怎么找? 2162084
邀请新用户注册赠送积分活动 1180518
关于科研通互助平台的介绍 1086076