Activatable Nanoprobe with Aggregation-Induced Dual Fluorescence and Photoacoustic Signal Enhancement for Tumor Precision Imaging and Radiotherapy

纳米探针 化学 分子成像 生物医学中的光声成像 荧光 荧光寿命成像显微镜 胶体金 生物物理学 纳米颗粒 纳米技术 体内 材料科学 生物 光学 物理 生物技术
作者
Meng Yuan,Fang Xiao,Ying Wu,Yuanji Xu,Hongjuan Feng,Jing Mu,Zhongxiang Chen,Yuhong Lin,Qinrui Fu,Wei Du,Huanghao Yang,Jibin Song
出处
期刊:Analytical Chemistry [American Chemical Society]
卷期号:94 (12): 5204-5211 被引量:16
标识
DOI:10.1021/acs.analchem.2c00340
摘要

Owing to the high sensitivity and high spatial resolution, fluorescence (FL) imaging has been widely applied for visualizing biological processes. To gain insight into molecular events on deeper tissues, photoacoustic (PA) imaging with better deep-tissue imaging capability can be incorporated to provide complementary visualization and quantitative information on the pathological status. However, the development of activatable imaging probes to achieve both FL and PA signal amplification remains challenging because the enhancement of light absorption in PA imaging often caused the quenching of FL signal. Herein, we first developed a caspase-3 enzyme activatable nanoprobe of a nanogapped gold nanoparticle coated with AIE molecule INT20 and DEVD peptides (AuNNP@DEVD-INT20) for tumor FL and PA imaging and subsequent imaging-guided radiotherapy. The nanoprobe could interact with GSH and caspase-3 enzyme to liberate INT20 molecules, leading to AIE. Simultaneously, the in situ self-assembly of AuNPs was achieved through the cross-linking reaction between the sulfhydryl and the maleimide, resulting in ratiometric PA imaging in tumor. Remarkably, the nanoprobe can generate richful ROS for cancer radiotherapy under X-ray irradiation. The platform not only achieves the aggregation-induced FL and PA signal enhancement but also provides a general strategy for imaging of various biomarkers, eventually benefiting precise cancer therapy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
星辰大海应助清晨采纳,获得10
1秒前
郭好好好好好好完成签到,获得积分10
1秒前
风中醉蝶完成签到,获得积分10
3秒前
Jarvis Lin应助如意蛋挞采纳,获得10
3秒前
研友_LJGXgn完成签到,获得积分10
4秒前
1410完成签到,获得积分10
5秒前
科研通AI2S应助Sandy采纳,获得10
5秒前
dreammaker完成签到,获得积分10
6秒前
嘉心糖应助幸福书包采纳,获得20
7秒前
8秒前
10秒前
Murphy关注了科研通微信公众号
10秒前
12秒前
蚂虾发布了新的文献求助10
12秒前
12秒前
脑洞疼应助jiejie采纳,获得20
13秒前
CipherSage应助玥来玥好采纳,获得10
14秒前
苏苏完成签到,获得积分10
15秒前
16秒前
友好亚男完成签到 ,获得积分10
17秒前
许晓蝶完成签到,获得积分10
18秒前
18秒前
bkagyin应助个性毛衣采纳,获得10
20秒前
井野浮完成签到,获得积分10
20秒前
芦同学发布了新的文献求助20
20秒前
orange发布了新的文献求助10
21秒前
21秒前
Lucas应助科研通管家采纳,获得10
21秒前
赘婿应助科研通管家采纳,获得10
21秒前
21秒前
毛豆应助科研通管家采纳,获得10
21秒前
iNk应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
21秒前
领导范儿应助科研通管家采纳,获得10
21秒前
英俊的铭应助科研通管家采纳,获得10
22秒前
优秀剑愁完成签到 ,获得积分10
22秒前
科目三应助顾海东采纳,获得10
22秒前
23秒前
fan发布了新的文献求助10
23秒前
Feng发布了新的文献求助10
23秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1200
How Maoism Was Made: Reconstructing China, 1949-1965 800
Medical technology industry in China 600
ANSYS Workbench基础教程与实例详解 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312299
求助须知:如何正确求助?哪些是违规求助? 2944955
关于积分的说明 8522182
捐赠科研通 2620750
什么是DOI,文献DOI怎么找? 1433015
科研通“疑难数据库(出版商)”最低求助积分说明 664817
邀请新用户注册赠送积分活动 650153