纳米探针
化学
分子成像
生物医学中的光声成像
荧光
荧光寿命成像显微镜
胶体金
生物物理学
纳米颗粒
纳米技术
体内
材料科学
生物
光学
物理
生物技术
作者
Meng Yuan,Fang Xiao,Ying Wu,Yuanji Xu,Hongjuan Feng,Jing Mu,Zhongxiang Chen,Yuhong Lin,Qinrui Fu,Wei Du,Huanghao Yang,Jibin Song
标识
DOI:10.1021/acs.analchem.2c00340
摘要
Owing to the high sensitivity and high spatial resolution, fluorescence (FL) imaging has been widely applied for visualizing biological processes. To gain insight into molecular events on deeper tissues, photoacoustic (PA) imaging with better deep-tissue imaging capability can be incorporated to provide complementary visualization and quantitative information on the pathological status. However, the development of activatable imaging probes to achieve both FL and PA signal amplification remains challenging because the enhancement of light absorption in PA imaging often caused the quenching of FL signal. Herein, we first developed a caspase-3 enzyme activatable nanoprobe of a nanogapped gold nanoparticle coated with AIE molecule INT20 and DEVD peptides (AuNNP@DEVD-INT20) for tumor FL and PA imaging and subsequent imaging-guided radiotherapy. The nanoprobe could interact with GSH and caspase-3 enzyme to liberate INT20 molecules, leading to AIE. Simultaneously, the in situ self-assembly of AuNPs was achieved through the cross-linking reaction between the sulfhydryl and the maleimide, resulting in ratiometric PA imaging in tumor. Remarkably, the nanoprobe can generate richful ROS for cancer radiotherapy under X-ray irradiation. The platform not only achieves the aggregation-induced FL and PA signal enhancement but also provides a general strategy for imaging of various biomarkers, eventually benefiting precise cancer therapy.
科研通智能强力驱动
Strongly Powered by AbleSci AI