已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries

预言 稳健性(进化) 深度学习 人工智能 蒙特卡罗方法 计算机科学 人工神经网络 机器学习 辍学(神经网络) 工程类 可靠性工程 数据挖掘 统计 基因 生物化学 化学 数学
作者
Sung Wook Kim,Ki‐Yong Oh,Seung‐Chul Lee
出处
期刊:Applied Energy [Elsevier BV]
卷期号:315: 119011-119011 被引量:34
标识
DOI:10.1016/j.apenergy.2022.119011
摘要

This paper proposes a novel, informed deep-learning-based prognostics framework for on-board state of health and remaining useful life estimations of lithium-ion batteries, which are critical components for strategizing energy and power used in electric vehicles. The framework comprises three phases. First, reliable and online accessible impedance-related features are collected from discharge curves. Second, these features are inputted into the proposed knowledge-infused recurrent neural network, a hybrid model that combines an empirical model with a deep neural network. Third, Monte Carlo dropout, a deep learning method for obtaining a probabilistic prediction of a neural network, is addressed to secure robustness in estimating the state of health and remaining useful life. Layer-wise relevance propagation, a deep learning technique for tracking the evolution of feature importance and offering scientific reasoning of the output, confirms that impedance-related features significantly contribute to the estimation accuracy compared to other features investigated in previous studies. Moreover, the hybrid model improves the estimation accuracy and robustness, whereas Monte Carlo dropout ensures robustness and reliability. Specifically, the estimation results for the public degradation data reveal that the proposed model can output significantly more accurate state of health and remaining useful life estimations than the baseline deep neural networks. The findings of this study provide insight into the explicable and uncertainty-based pipeline of deep neural networks with respect to battery health monitoring, which are highly recommendable features for decision-making and corrective planning of power and energy used in lithium-ion battery cells and packs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
淙淙柔水完成签到,获得积分0
1秒前
2秒前
3秒前
ZZZ完成签到 ,获得积分10
3秒前
辛勤钧发布了新的文献求助10
4秒前
小罗咩咩完成签到,获得积分10
7秒前
9秒前
可爱的函函应助RAY采纳,获得10
9秒前
兰月满楼完成签到 ,获得积分10
9秒前
oleskarabach发布了新的文献求助10
9秒前
文子完成签到 ,获得积分10
11秒前
qqq完成签到 ,获得积分10
11秒前
Akim应助科研通管家采纳,获得10
12秒前
CodeCraft应助科研通管家采纳,获得10
12秒前
科研通AI2S应助科研通管家采纳,获得10
12秒前
爆米花应助科研通管家采纳,获得10
12秒前
wanci应助科研通管家采纳,获得10
12秒前
科研通AI5应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
称心曼岚完成签到 ,获得积分10
14秒前
诺诺完成签到 ,获得积分10
15秒前
16秒前
gezid完成签到 ,获得积分10
16秒前
17秒前
SAXA完成签到,获得积分10
19秒前
科研狗完成签到,获得积分10
20秒前
激动的晓筠完成签到 ,获得积分10
20秒前
圆圆的馒头完成签到,获得积分10
23秒前
25秒前
拼搏向上完成签到,获得积分10
25秒前
25秒前
李爱国应助小菡菡采纳,获得10
26秒前
28秒前
今夜无人入眠完成签到,获得积分20
28秒前
WHY完成签到 ,获得积分10
29秒前
熊大发布了新的文献求助10
31秒前
32秒前
呆萌的太阳完成签到 ,获得积分10
32秒前
文艺的枫叶完成签到 ,获得积分10
33秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
Genre and Graduate-Level Research Writing 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3674205
求助须知:如何正确求助?哪些是违规求助? 3229618
关于积分的说明 9786440
捐赠科研通 2940150
什么是DOI,文献DOI怎么找? 1611710
邀请新用户注册赠送积分活动 761012
科研通“疑难数据库(出版商)”最低求助积分说明 736352