Novel informed deep learning-based prognostics framework for on-board health monitoring of lithium-ion batteries

预言 稳健性(进化) 深度学习 人工智能 蒙特卡罗方法 计算机科学 人工神经网络 机器学习 辍学(神经网络) 工程类 可靠性工程 数据挖掘 生物化学 化学 统计 数学 基因
作者
Sung Wook Kim,Ki‐Yong Oh,Seung−Chul Lee
出处
期刊:Applied Energy [Elsevier]
卷期号:315: 119011-119011 被引量:17
标识
DOI:10.1016/j.apenergy.2022.119011
摘要

This paper proposes a novel, informed deep-learning-based prognostics framework for on-board state of health and remaining useful life estimations of lithium-ion batteries, which are critical components for strategizing energy and power used in electric vehicles. The framework comprises three phases. First, reliable and online accessible impedance-related features are collected from discharge curves. Second, these features are inputted into the proposed knowledge-infused recurrent neural network, a hybrid model that combines an empirical model with a deep neural network. Third, Monte Carlo dropout, a deep learning method for obtaining a probabilistic prediction of a neural network, is addressed to secure robustness in estimating the state of health and remaining useful life. Layer-wise relevance propagation, a deep learning technique for tracking the evolution of feature importance and offering scientific reasoning of the output, confirms that impedance-related features significantly contribute to the estimation accuracy compared to other features investigated in previous studies. Moreover, the hybrid model improves the estimation accuracy and robustness, whereas Monte Carlo dropout ensures robustness and reliability. Specifically, the estimation results for the public degradation data reveal that the proposed model can output significantly more accurate state of health and remaining useful life estimations than the baseline deep neural networks. The findings of this study provide insight into the explicable and uncertainty-based pipeline of deep neural networks with respect to battery health monitoring, which are highly recommendable features for decision-making and corrective planning of power and energy used in lithium-ion battery cells and packs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
August完成签到,获得积分10
1秒前
A灰机发布了新的文献求助10
1秒前
Cynthia发布了新的文献求助10
1秒前
Yang发布了新的文献求助10
2秒前
3秒前
陈无敌完成签到 ,获得积分10
3秒前
biocx发布了新的文献求助10
4秒前
泥嚎发财小兄弟完成签到 ,获得积分10
4秒前
上善若水发布了新的文献求助20
4秒前
4秒前
乐乐应助冷傲的如柏采纳,获得10
5秒前
牛奶和完成签到,获得积分10
5秒前
6秒前
8秒前
水木生完成签到 ,获得积分10
8秒前
CipherSage应助dyp采纳,获得10
8秒前
高大迎曼发布了新的文献求助10
9秒前
Ni完成签到,获得积分20
10秒前
古娜拉柔发布了新的文献求助10
11秒前
丘比特应助doo采纳,获得10
14秒前
14秒前
Hou发布了新的文献求助30
15秒前
15秒前
15秒前
17秒前
Melody完成签到,获得积分10
17秒前
陶醉的妖丽完成签到 ,获得积分10
17秒前
我的副本完成签到,获得积分10
17秒前
小个发布了新的文献求助10
18秒前
好困发布了新的文献求助50
19秒前
于于发布了新的文献求助10
19秒前
19秒前
Cynthia完成签到,获得积分10
19秒前
田様应助孔曼卉采纳,获得10
19秒前
充电宝应助MingqingFang采纳,获得10
20秒前
21秒前
21秒前
充电宝应助wjywjy采纳,获得10
21秒前
Dsivan发布了新的文献求助10
21秒前
22秒前
高分求助中
Earth System Geophysics 1000
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
mTOR signalling in RPGR-associated Retinitis Pigmentosa 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Aspects of Babylonian celestial divination: the lunar eclipse tablets of Enūma Anu Enlil 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3206565
求助须知:如何正确求助?哪些是违规求助? 2856045
关于积分的说明 8102101
捐赠科研通 2521097
什么是DOI,文献DOI怎么找? 1354139
科研通“疑难数据库(出版商)”最低求助积分说明 641924
邀请新用户注册赠送积分活动 613167