Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network

深信不疑网络 激光诱导击穿光谱 人工智能 人工神经网络 模式识别(心理学) 线性判别分析 试验装置 计算机科学 反向传播 深度学习 特征(语言学) 非线性系统 集合(抽象数据类型) 生物系统 激光器 光学 物理 语言学 哲学 量子力学 生物 程序设计语言
作者
Guanghui Chen,Qingdong Zeng,Wenxin Li,Xiangang Chen,Mengtian Yuan,Lin Liu,Honghua Ma,Boyun Wang,Yang Liu,Lianbo Guo,Huaqing Yu
出处
期刊:Optics Express [The Optical Society]
卷期号:30 (6): 9428-9428 被引量:17
标识
DOI:10.1364/oe.451969
摘要

The identification of steels is a crucial step in the process of recycling and reusing steel waste. Laser-induced breakdown spectroscopy (LIBS) coupled with machine learning is a convenient method to classify the types of materials. LIBS can generate characteristic spectra of various samples as input variable for steel classification in real time. However, the performance of classification model is limited to the complex input due to similar chemical composition in samples and nonlinearity problems between spectral intensities and elemental concentrations. In this study, we developed a method of LIBS coupled with deep belief network (DBN), which is suitable to deal with a nonlinear problem, to classify 13 brands of special steels. The performance of the training and validation sets were used as the standard to optimize the structure of DBN. For different input, such as the intensities of full-spectra signals and characteristic spectra lines, the accuracies of the optimized DBN model in the training, validation, and test set are all over 98%. Moreover, compared with the self-organizing maps, linear discriminant analysis (LDA), k-nearest neighbor (KNN) and back-propagation artificial neural networks (BPANN), the result of the test set showed that the optimized DBN model performed second best (98.46%) in all methods using characteristic spectra lines as input. The test accuracy of the DBN model could reach 100% and the maximum accuracy of other methods ranged from 62.31% to 96.16% using full-spectra signals as input. This study demonstrates that DBN can extract representative feature information from high-dimensional input, and that LIBS coupled with DBN has great potential for steel classification.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助10
刚刚
无花果应助7777777采纳,获得10
1秒前
小饼一定要上岸完成签到 ,获得积分10
1秒前
欢喜无价完成签到,获得积分10
1秒前
屁王完成签到,获得积分10
3秒前
4秒前
伶俐的紫蓝完成签到,获得积分10
4秒前
2389937250应助不爱吃苹果采纳,获得10
5秒前
6秒前
qiancheng完成签到,获得积分10
6秒前
z_完成签到,获得积分10
6秒前
6秒前
Young完成签到,获得积分10
6秒前
Owen应助datiancaihaha采纳,获得10
8秒前
坠云完成签到,获得积分10
10秒前
重要海秋发布了新的文献求助10
11秒前
ballball233发布了新的文献求助10
12秒前
Young发布了新的文献求助20
12秒前
13秒前
独特的凡蕾完成签到 ,获得积分10
13秒前
fox完成签到 ,获得积分10
13秒前
wmf完成签到 ,获得积分10
14秒前
田様应助www采纳,获得10
14秒前
子车茗应助坠云采纳,获得20
15秒前
16秒前
xuan完成签到,获得积分10
16秒前
orixero应助musicyy222采纳,获得10
17秒前
destiny发布了新的文献求助30
18秒前
18秒前
18秒前
18秒前
量子星尘发布了新的文献求助10
19秒前
落日游云完成签到,获得积分10
21秒前
陈翔发布了新的文献求助10
21秒前
22秒前
怡心亭完成签到 ,获得积分0
23秒前
23秒前
LeaF发布了新的文献求助10
23秒前
Rui关闭了Rui文献求助
24秒前
nipoo完成签到 ,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5734970
求助须知:如何正确求助?哪些是违规求助? 5357733
关于积分的说明 15328255
捐赠科研通 4879430
什么是DOI,文献DOI怎么找? 2621934
邀请新用户注册赠送积分活动 1571143
关于科研通互助平台的介绍 1527931