Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network

深信不疑网络 激光诱导击穿光谱 人工智能 人工神经网络 模式识别(心理学) 线性判别分析 试验装置 计算机科学 反向传播 深度学习 特征(语言学) 非线性系统 集合(抽象数据类型) 生物系统 激光器 光学 物理 程序设计语言 哲学 生物 量子力学 语言学
作者
Guanghui Chen,Qingdong Zeng,Wenxin Li,Xiangang Chen,Mengtian Yuan,Lin Liu,Honghua Ma,Boyun Wang,Yang Liu,Lianbo Guo,Huaqing Yu
出处
期刊:Optics Express [Optica Publishing Group]
卷期号:30 (6): 9428-9428 被引量:17
标识
DOI:10.1364/oe.451969
摘要

The identification of steels is a crucial step in the process of recycling and reusing steel waste. Laser-induced breakdown spectroscopy (LIBS) coupled with machine learning is a convenient method to classify the types of materials. LIBS can generate characteristic spectra of various samples as input variable for steel classification in real time. However, the performance of classification model is limited to the complex input due to similar chemical composition in samples and nonlinearity problems between spectral intensities and elemental concentrations. In this study, we developed a method of LIBS coupled with deep belief network (DBN), which is suitable to deal with a nonlinear problem, to classify 13 brands of special steels. The performance of the training and validation sets were used as the standard to optimize the structure of DBN. For different input, such as the intensities of full-spectra signals and characteristic spectra lines, the accuracies of the optimized DBN model in the training, validation, and test set are all over 98%. Moreover, compared with the self-organizing maps, linear discriminant analysis (LDA), k-nearest neighbor (KNN) and back-propagation artificial neural networks (BPANN), the result of the test set showed that the optimized DBN model performed second best (98.46%) in all methods using characteristic spectra lines as input. The test accuracy of the DBN model could reach 100% and the maximum accuracy of other methods ranged from 62.31% to 96.16% using full-spectra signals as input. This study demonstrates that DBN can extract representative feature information from high-dimensional input, and that LIBS coupled with DBN has great potential for steel classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI5应助Hexagram采纳,获得10
1秒前
Owen应助gww采纳,获得10
2秒前
小巧的洋葱完成签到 ,获得积分10
2秒前
畅快老虎发布了新的文献求助10
2秒前
3秒前
爱听歌蘑菇完成签到,获得积分10
3秒前
小高完成签到 ,获得积分10
3秒前
5秒前
5秒前
5秒前
hygge完成签到 ,获得积分10
5秒前
藤井树发布了新的文献求助10
5秒前
6秒前
huilini完成签到,获得积分10
6秒前
zwl完成签到,获得积分10
6秒前
传奇3应助鱼雁采纳,获得10
6秒前
6秒前
7秒前
yang发布了新的文献求助10
8秒前
8秒前
weiwei发布了新的文献求助10
10秒前
迦佭发布了新的文献求助10
10秒前
kuma完成签到,获得积分20
11秒前
zdy发布了新的文献求助10
12秒前
13秒前
1111发布了新的文献求助10
13秒前
英俊的铭应助跳跃的洪纲采纳,获得10
14秒前
14秒前
15秒前
赘婿应助陈住气采纳,获得10
17秒前
17秒前
等你下课发布了新的文献求助10
18秒前
18秒前
希望天下0贩的0应助二狗采纳,获得10
19秒前
JamesPei应助weiwei采纳,获得10
20秒前
Stanford发布了新的文献求助10
20秒前
SHAO应助zhaxiao采纳,获得10
20秒前
Singularity应助zhaxiao采纳,获得10
20秒前
今后应助zhaxiao采纳,获得10
20秒前
我是老大应助zhaxiao采纳,获得10
20秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979916
求助须知:如何正确求助?哪些是违规求助? 3524003
关于积分的说明 11219349
捐赠科研通 3261424
什么是DOI,文献DOI怎么找? 1800654
邀请新用户注册赠送积分活动 879239
科研通“疑难数据库(出版商)”最低求助积分说明 807214