Classification of steel using laser-induced breakdown spectroscopy combined with deep belief network

深信不疑网络 激光诱导击穿光谱 人工智能 人工神经网络 模式识别(心理学) 线性判别分析 试验装置 计算机科学 反向传播 深度学习 特征(语言学) 非线性系统 集合(抽象数据类型) 生物系统 激光器 光学 物理 语言学 哲学 量子力学 生物 程序设计语言
作者
Guanghui Chen,Qingdong Zeng,Wenxin Li,Xiangang Chen,Mengtian Yuan,Lin Liu,Honghua Ma,Boyun Wang,Yang Liu,Lianbo Guo,Huaqing Yu
出处
期刊:Optics Express [The Optical Society]
卷期号:30 (6): 9428-9428 被引量:17
标识
DOI:10.1364/oe.451969
摘要

The identification of steels is a crucial step in the process of recycling and reusing steel waste. Laser-induced breakdown spectroscopy (LIBS) coupled with machine learning is a convenient method to classify the types of materials. LIBS can generate characteristic spectra of various samples as input variable for steel classification in real time. However, the performance of classification model is limited to the complex input due to similar chemical composition in samples and nonlinearity problems between spectral intensities and elemental concentrations. In this study, we developed a method of LIBS coupled with deep belief network (DBN), which is suitable to deal with a nonlinear problem, to classify 13 brands of special steels. The performance of the training and validation sets were used as the standard to optimize the structure of DBN. For different input, such as the intensities of full-spectra signals and characteristic spectra lines, the accuracies of the optimized DBN model in the training, validation, and test set are all over 98%. Moreover, compared with the self-organizing maps, linear discriminant analysis (LDA), k-nearest neighbor (KNN) and back-propagation artificial neural networks (BPANN), the result of the test set showed that the optimized DBN model performed second best (98.46%) in all methods using characteristic spectra lines as input. The test accuracy of the DBN model could reach 100% and the maximum accuracy of other methods ranged from 62.31% to 96.16% using full-spectra signals as input. This study demonstrates that DBN can extract representative feature information from high-dimensional input, and that LIBS coupled with DBN has great potential for steel classification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
liangbing完成签到,获得积分20
刚刚
刚刚
诺木完成签到,获得积分20
刚刚
大开口完成签到,获得积分10
1秒前
共享精神应助aoaoao采纳,获得30
1秒前
赘婿应助忐忑的远山采纳,获得10
2秒前
2秒前
冷月完成签到,获得积分10
2秒前
ababa发布了新的文献求助10
2秒前
nnnnn发布了新的文献求助10
3秒前
4秒前
sll应助小冷采纳,获得10
4秒前
faker发布了新的文献求助20
4秒前
小马想毕业完成签到,获得积分10
5秒前
水博士发布了新的文献求助10
5秒前
在水一方应助Ricewind采纳,获得10
6秒前
扁舟发布了新的文献求助10
7秒前
7秒前
7秒前
7秒前
忧虑的访梦完成签到 ,获得积分10
8秒前
9秒前
Satellites完成签到,获得积分10
10秒前
小吴搞科研完成签到,获得积分10
11秒前
er发布了新的文献求助10
11秒前
13秒前
热心市民小红花应助TOTORO采纳,获得10
13秒前
哇咔咔完成签到,获得积分20
13秒前
aoaoao发布了新的文献求助30
13秒前
13秒前
苗松完成签到,获得积分10
13秒前
14秒前
yiyi完成签到,获得积分10
14秒前
14秒前
15秒前
16秒前
ababa完成签到,获得积分10
16秒前
17秒前
xz完成签到,获得积分10
17秒前
PAD发布了新的文献求助10
17秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Impiego dell’associazione acetazolamide/pentossifillina nel trattamento dell’ipoacusia improvvisa idiopatica in pazienti affetti da glaucoma cronico 900
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
錢鍾書楊絳親友書札 600
Geochemistry, 2nd Edition 地球化学经典教科书第二版,不要epub版本 431
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3296050
求助须知:如何正确求助?哪些是违规求助? 2931953
关于积分的说明 8454260
捐赠科研通 2604502
什么是DOI,文献DOI怎么找? 1421789
科研通“疑难数据库(出版商)”最低求助积分说明 661203
邀请新用户注册赠送积分活动 644102