A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 医学 物理 经典力学 量子力学 病理 热力学 可靠性工程
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
万能图书馆应助luke采纳,获得10
刚刚
刚刚
刚刚
2秒前
大模型应助半_采纳,获得10
3秒前
4秒前
4秒前
向阳发布了新的文献求助10
4秒前
4秒前
nanshou发布了新的文献求助10
5秒前
小龚小龚发布了新的文献求助10
5秒前
5秒前
简单的藏红花完成签到,获得积分10
5秒前
panyubo完成签到,获得积分20
6秒前
TANG发布了新的文献求助10
7秒前
可靠F发布了新的文献求助10
8秒前
小鱼完成签到,获得积分10
9秒前
天真依玉完成签到,获得积分10
9秒前
yjh发布了新的文献求助10
9秒前
10秒前
熊猫之歌完成签到,获得积分10
10秒前
10秒前
10秒前
现代蛋挞完成签到,获得积分10
11秒前
等待兔子完成签到,获得积分20
11秒前
13秒前
14秒前
15秒前
15秒前
16秒前
17秒前
田字格发布了新的文献求助10
17秒前
17秒前
luke发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
17秒前
18秒前
pgg147852发布了新的文献求助30
18秒前
深情海秋完成签到,获得积分10
19秒前
20秒前
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637646
求助须知:如何正确求助?哪些是违规求助? 4743795
关于积分的说明 14999969
捐赠科研通 4795812
什么是DOI,文献DOI怎么找? 2562208
邀请新用户注册赠送积分活动 1521661
关于科研通互助平台的介绍 1481646