A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 病理 物理 热力学 经典力学 医学 可靠性工程 量子力学
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
cyx完成签到,获得积分10
1秒前
qing完成签到,获得积分10
2秒前
逻辑猫完成签到 ,获得积分10
3秒前
3秒前
3秒前
Shan发布了新的文献求助10
4秒前
5秒前
hui完成签到,获得积分10
5秒前
Yzz完成签到,获得积分10
6秒前
小娜娜发布了新的文献求助10
7秒前
Aurora完成签到 ,获得积分10
8秒前
小二郎应助jovrtic采纳,获得10
8秒前
toptop发布了新的文献求助10
12秒前
明明发布了新的文献求助10
12秒前
上杉绘梨衣完成签到,获得积分10
13秒前
可爱以冬完成签到 ,获得积分10
14秒前
16秒前
学分发布了新的文献求助10
16秒前
orixero应助优雅的涵瑶采纳,获得10
18秒前
倩Q完成签到,获得积分10
21秒前
凯撒的归凯撒完成签到 ,获得积分10
22秒前
张杠杠完成签到 ,获得积分10
22秒前
23秒前
25秒前
赘婿应助KrisTina采纳,获得10
27秒前
袁翰将军完成签到 ,获得积分10
28秒前
30秒前
AI完成签到,获得积分10
31秒前
哈哈完成签到 ,获得积分10
31秒前
退而求其次完成签到,获得积分10
32秒前
zzz完成签到,获得积分10
32秒前
34秒前
左一酱完成签到 ,获得积分10
36秒前
36秒前
汉堡包应助想象之中采纳,获得10
37秒前
39秒前
39秒前
诚心水蓝完成签到 ,获得积分10
40秒前
刘晚柠完成签到 ,获得积分10
40秒前
40秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Handbook of Qualitative Cross-Cultural Research Methods 600
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3140237
求助须知:如何正确求助?哪些是违规求助? 2791023
关于积分的说明 7797649
捐赠科研通 2447480
什么是DOI,文献DOI怎么找? 1301910
科研通“疑难数据库(出版商)”最低求助积分说明 626345
版权声明 601194