A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 医学 物理 经典力学 量子力学 病理 热力学 可靠性工程
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
生如逆旅完成签到,获得积分10
刚刚
刚刚
Yu发布了新的文献求助10
刚刚
酷酷盼秋发布了新的文献求助10
刚刚
1秒前
小刘发布了新的文献求助10
2秒前
Ava应助枣树先生采纳,获得10
2秒前
ccj发布了新的文献求助10
3秒前
3秒前
77完成签到,获得积分10
3秒前
复杂的虔完成签到,获得积分10
3秒前
科研通AI6应助lucky采纳,获得20
4秒前
FashionBoy应助vvv采纳,获得10
4秒前
Alien完成签到,获得积分10
4秒前
量子星尘发布了新的文献求助10
4秒前
Orange应助自觉的薯片采纳,获得10
5秒前
酷波er应助俏皮半凡采纳,获得10
6秒前
内向映天完成签到 ,获得积分10
6秒前
林菲艳发布了新的文献求助10
6秒前
7秒前
8秒前
大宝贝爱学习完成签到,获得积分10
8秒前
科研通AI6应助modesty采纳,获得10
8秒前
9秒前
ethan发布了新的文献求助10
9秒前
壮观人达完成签到,获得积分10
9秒前
枣树先生完成签到,获得积分10
9秒前
9秒前
科研通AI6应助sc采纳,获得10
9秒前
10秒前
11秒前
12秒前
枣树先生发布了新的文献求助10
12秒前
12秒前
12秒前
Tonson应助harutya采纳,获得10
13秒前
13秒前
13秒前
14秒前
丘比特应助ccj采纳,获得10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Washback Research in Language Assessment:Fundamentals and Contexts 400
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5469034
求助须知:如何正确求助?哪些是违规求助? 4572251
关于积分的说明 14334549
捐赠科研通 4499069
什么是DOI,文献DOI怎么找? 2464895
邀请新用户注册赠送积分活动 1453435
关于科研通互助平台的介绍 1427961