A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 医学 物理 经典力学 量子力学 病理 热力学 可靠性工程
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Eon发布了新的文献求助10
刚刚
科研通AI2S应助happiness采纳,获得10
1秒前
复杂毛衣发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
彭于晏应助王木木采纳,获得10
4秒前
cloe完成签到,获得积分20
4秒前
favor发布了新的文献求助10
4秒前
5秒前
qian完成签到,获得积分10
5秒前
ming发布了新的文献求助10
5秒前
L1关闭了L1文献求助
5秒前
6秒前
6秒前
6秒前
天天完成签到 ,获得积分10
7秒前
稳重十三完成签到,获得积分10
7秒前
所所应助菠萝采纳,获得10
8秒前
8秒前
9秒前
10秒前
科研通AI6应助我爱吃肉采纳,获得10
10秒前
11秒前
lin完成签到,获得积分10
11秒前
量子星尘发布了新的文献求助10
12秒前
sunny发布了新的文献求助10
12秒前
羊大侠发布了新的文献求助10
12秒前
happiness发布了新的文献求助10
13秒前
14秒前
彩色冰蝶发布了新的文献求助10
15秒前
俊逸慕灵发布了新的文献求助10
15秒前
景C完成签到 ,获得积分10
16秒前
郭郭盖过完成签到,获得积分10
18秒前
时尚语梦发布了新的文献求助10
18秒前
王木木发布了新的文献求助10
18秒前
大模型应助羊大侠采纳,获得10
19秒前
19秒前
21秒前
西因应助可耐的冰巧采纳,获得10
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
King Tyrant 720
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
The Synthesis of Simplified Analogues of Crambescin B Carboxylic Acid and Their Inhibitory Activity of Voltage-Gated Sodium Channels: New Aspects of Structure–Activity Relationships 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5598629
求助须知:如何正确求助?哪些是违规求助? 4684062
关于积分的说明 14833541
捐赠科研通 4664247
什么是DOI,文献DOI怎么找? 2537306
邀请新用户注册赠送积分活动 1504899
关于科研通互助平台的介绍 1470593