A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 病理 物理 热力学 经典力学 医学 可靠性工程 量子力学
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伍六七完成签到 ,获得积分10
1秒前
3秒前
3秒前
在水一方应助lll采纳,获得10
3秒前
3秒前
xinxin发布了新的文献求助10
4秒前
Lucas应助腼腆的又槐采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助30
6秒前
归尘发布了新的文献求助30
8秒前
8秒前
思源应助研友_8yN60L采纳,获得10
9秒前
nihao完成签到,获得积分20
9秒前
9秒前
www应助狒狒采纳,获得20
9秒前
小无发布了新的文献求助10
9秒前
英俊的铭应助怡然小蚂蚁采纳,获得10
10秒前
11秒前
11秒前
11秒前
晚秋北斗完成签到 ,获得积分10
11秒前
13秒前
所所应助RC_Wang采纳,获得10
14秒前
15秒前
15秒前
minggong发布了新的文献求助10
15秒前
16秒前
16秒前
家伟发布了新的文献求助10
17秒前
17秒前
ww发布了新的文献求助10
18秒前
liviawong完成签到,获得积分10
19秒前
20秒前
桐桐应助xinxin采纳,获得10
20秒前
马尔尼菲蓝状菌完成签到,获得积分10
21秒前
21秒前
林een发布了新的文献求助30
21秒前
22秒前
莫兮佐发布了新的文献求助10
22秒前
Saber完成签到,获得积分10
24秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959110
求助须知:如何正确求助?哪些是违规求助? 3505445
关于积分的说明 11123768
捐赠科研通 3237126
什么是DOI,文献DOI怎么找? 1788987
邀请新用户注册赠送积分活动 871477
科研通“疑难数据库(出版商)”最低求助积分说明 802821