已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

A Machine Learning-Based Approach for the Design of Lower Limb Exoskeleton

外骨骼 运动学 自由度(物理和化学) 逆动力学 计算机科学 力矩(物理) 接头(建筑物) 地面反作用力 扭矩 有限元法 脚踝 不可用 模拟 人工智能 工程类 结构工程 医学 物理 经典力学 量子力学 病理 热力学 可靠性工程
作者
Vaibhavsingh Surendrasingh Varma,R. Yogeshwar Rao,Pandu R. Vundavilli,Mihir Kumar Pandit,P. R. Budarapu
出处
期刊:International Journal of Computational Methods [World Scientific]
卷期号:19 (08) 被引量:7
标识
DOI:10.1142/s0219876221420123
摘要

Active Exoskeletons can become a powerful tool for therapists for the rehabilitation of patients suffering from neurophysiological conditions. The mathematical modeling for estimating joint moments required for human walking movement proves difficult due to the high number of degrees of freedom (DoF) and the complexity of movement. Another factor that poses a problem is the unavailability of ground reaction force (GRF) data, which must be present as the external applied forces in the model. This paper presents a machine learning-based approach for predicting joint moments for walking that uses only the kinematic data of the subjects. The dataset used includes data available from published sources as well as data collected by the authors. The predictions have been compared with and validated using the joint moment results from optimization-based inverse dynamics model in OpenSim. Subsequently, a concept design of a lower limb exoskeleton has been presented and actuator requirements for the same are set according to the joint moment predictions for a specific human subject. The prototype design includes eight rotational degrees of freedom (DOF) in total, i.e., four degrees of freedom per leg: two at the hip joint, one at the knee joint and one at the ankle joint. The feasibility study of the prototype has been carried out with the help of finite element analysis (FEA) in Ansys software after utilizing the weight of the human being and joint rotations as inputs to the model. Based on the results obtained from the FEM, the design has been optimized to ensure structural stability.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YYY发布了新的文献求助10
刚刚
hnx1005完成签到 ,获得积分10
1秒前
Ttttsyu发布了新的文献求助10
1秒前
奥特曼发布了新的文献求助10
1秒前
研友_LXjdOZ发布了新的文献求助20
1秒前
2秒前
RC发布了新的文献求助10
2秒前
完美世界应助yu采纳,获得10
2秒前
欢喜烧鹅发布了新的文献求助10
2秒前
2秒前
3秒前
3秒前
听宇完成签到,获得积分20
3秒前
惕守应助不信人间有白头采纳,获得10
3秒前
4秒前
Jojo发布了新的文献求助10
5秒前
悬铃木发布了新的文献求助10
6秒前
WWW发布了新的文献求助10
7秒前
科研通AI6应助橘猫123456采纳,获得10
7秒前
现代的雪枫完成签到,获得积分10
7秒前
张凌发布了新的文献求助10
7秒前
黄震洋完成签到,获得积分10
8秒前
leslie应助gqz采纳,获得20
9秒前
瓶子君152完成签到,获得积分10
11秒前
紫菜发布了新的文献求助10
11秒前
香蕉觅云应助yunshui采纳,获得10
12秒前
SciGPT应助Jojo采纳,获得10
13秒前
乐乐应助hulian采纳,获得10
16秒前
Abra发布了新的文献求助10
16秒前
17秒前
17秒前
18秒前
柠檬树完成签到,获得积分10
18秒前
wanci应助欢喜烧鹅采纳,获得10
18秒前
19秒前
21秒前
深情安青应助橘子猫采纳,获得10
22秒前
雪白的威发布了新的文献求助10
22秒前
cciocio发布了新的文献求助10
23秒前
柠檬树发布了新的文献求助10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
King Tyrant 720
T/CIET 1631—2025《构网型柔性直流输电技术应用指南》 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5590041
求助须知:如何正确求助?哪些是违规求助? 4674484
关于积分的说明 14794065
捐赠科研通 4629905
什么是DOI,文献DOI怎么找? 2532488
邀请新用户注册赠送积分活动 1501195
关于科研通互助平台的介绍 1468558