Systematic Review on Identification and Prediction of Deep Learning-Based Cyber Security Technology and Convergence Fields

计算机安全 计算机科学 技术融合 趋同(经济学) 云计算 信息技术 鉴定(生物学) 大数据 风险分析(工程) 数据科学 电信 业务 数据挖掘 生物 操作系统 植物 经济 经济增长
作者
Seung-Yeon Hwang,Dong-Jin Shin,Jeong-Joon Kim
出处
期刊:Symmetry [MDPI AG]
卷期号:14 (4): 683-683 被引量:4
标识
DOI:10.3390/sym14040683
摘要

Recently, as core technologies leading the fourth industrial revolution, such as the Internet of Things (IoT), 5G, the cloud, and big data, have promoted smart convergence across national socio-economic infrastructures, cyber systems are expanding and becoming complex, and they are not effective in responding to cyber safety risks and threats using security technology solutions limited to a single system. Therefore, we developed cyber security technology that combines machine learning and AI technology to solve complex problems related to cyber safety. In this regard, this study aims to identify technology development trends to prevent the risks and threats of various cyber systems by monitoring major cyber security convergence fields and technologies through the symmetrical thesis and patent analysis. Because thesis information can explain the superiority of technology and patent information can explain the usefulness of a technology, they can be effectively used for analyzing and predicting technology development trends. Therefore, in this study, latent Dirichlet allocation is applied to extract text-document-based technical topics for the symmetrical thesis and patent information to identify security convergence fields and technologies for cyber safety. In addition, it elucidates cyber security convergence fields and technology trends by applying a dynamic topic model and long short-term memory, which are useful for analyzing technological changes and predicting trends. Based on these results, cyber security administrators, system operators, and developers can effectively identify and respond to trends in related technologies to reduce threats, and companies and experts developing cyber security solutions can present a new security approach.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
莫西莫西发布了新的文献求助10
刚刚
刚刚
Sevendesu完成签到,获得积分10
刚刚
无脚鸟完成签到,获得积分10
1秒前
2秒前
陈皮发布了新的文献求助10
2秒前
3秒前
OK完成签到,获得积分10
3秒前
wangzh发布了新的文献求助10
5秒前
小吃发布了新的文献求助10
6秒前
Lancer1034发布了新的文献求助10
6秒前
real发布了新的文献求助10
9秒前
向绝山完成签到,获得积分10
9秒前
jry完成签到 ,获得积分10
12秒前
13秒前
14秒前
CipherSage应助健康的绮晴采纳,获得10
15秒前
活力书包发布了新的文献求助10
16秒前
意明发布了新的文献求助10
16秒前
Adel完成签到 ,获得积分10
16秒前
把的蛮耐得烦完成签到,获得积分10
21秒前
DONGLK完成签到,获得积分10
22秒前
23秒前
24秒前
25秒前
153495159举报求助违规成功
25秒前
于芋菊举报求助违规成功
25秒前
科研文献搬运工举报求助违规成功
25秒前
25秒前
27秒前
书岩完成签到,获得积分10
27秒前
27秒前
罗亚亚完成签到,获得积分10
30秒前
31秒前
31秒前
32秒前
科研通AI2S应助能干的白风采纳,获得10
33秒前
34秒前
远山完成签到 ,获得积分10
35秒前
TAN应助徐凡采纳,获得10
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3155891
求助须知:如何正确求助?哪些是违规求助? 2807086
关于积分的说明 7871889
捐赠科研通 2465477
什么是DOI,文献DOI怎么找? 1312260
科研通“疑难数据库(出版商)”最低求助积分说明 629958
版权声明 601905