Modeling of a wheeled humanoid robot and hybrid algorithm-based path planning of wheel base for the dynamic obstacles avoidance

仿人机器人 运动规划 避障 算法 计算机科学 移动机器人 路径(计算) 运动学 加权 机器人 模拟 人工智能 医学 物理 经典力学 放射科 程序设计语言
作者
Shifa Sulaiman,A. P. Sudheer
出处
期刊:Industrial Robot-an International Journal [Emerald (MCB UP)]
卷期号:49 (6): 1058-1076 被引量:1
标识
DOI:10.1108/ir-12-2021-0298
摘要

Purpose Most of the conventional humanoid modeling approaches are not successful in coupling different branches of the tree-type humanoid robot. In this paper, a tree-type upper body humanoid robot with mobile base is modeled. The main purpose of this work is to model a non holonomic mobile platform and to develop a hybrid algorithm for avoiding dynamic obstacles. Decoupled Natural Orthogonal Complement methodology effectively combines different branches of the humanoid body during dynamic analysis. Collision avoidance also plays an important role along with modeling methods for successful operation of the upper body wheeled humanoid robot during real-time operations. The majority of path planning algorithms is facing problems in avoiding dynamic obstacles during real-time operations. Hence, a multi-fusion approach using a hybrid algorithm for avoiding dynamic obstacles in real time is introduced. Design/methodology/approach The kinematic and dynamic modeling of a humanoid robot with mobile platform is done using screw theory approach and Newton–Euler formulations, respectively. Dynamic obstacle avoidance using a novel hybrid algorithm is carried out and implemented in real time. D star lite and a geometric-based hybrid algorithms are combined to generate the optimized path for avoiding the dynamic obstacles. A weighting factor is added to the D star lite variant to optimize the basic version of D star lite algorithm. Lazy probabilistic road map (PRM) technique is used for creating nodes in configuration space. The dynamic obstacle avoidance is experimentally validated to achieve the optimum path. Findings The path obtained using the hybrid algorithm for avoiding dynamic obstacles is optimum. Path length, computational time, number of expanded nodes are analysed for determining the optimality of the path. The weighting function introduced along with the D star lite algorithm decreases computational time by decreasing the number of expanding nodes during path generation. Lazy evaluation technique followed in Lazy PRM algorithm reduces computational time for generating nodes and local paths. Originality/value Modeling of a tree-type humanoid robot along with the mobile platform is combinedly developed for the determination of the kinematic and dynamic equations. This paper also aims to develop a novel hybrid algorithm for avoiding collision with dynamic obstacles with minimal computational effort in real-time operations.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
务实含灵完成签到,获得积分10
刚刚
1秒前
paperslicing发布了新的文献求助10
2秒前
yy完成签到,获得积分10
2秒前
2秒前
max完成签到,获得积分10
2秒前
kone完成签到,获得积分10
3秒前
ctttt发布了新的文献求助10
4秒前
小孙同学发布了新的文献求助10
4秒前
量子星尘发布了新的文献求助10
4秒前
传奇3应助柳柳采纳,获得10
4秒前
友好念真完成签到,获得积分10
5秒前
5秒前
善良的无颜完成签到,获得积分10
6秒前
Ava应助张mingyu123采纳,获得10
6秒前
7秒前
阿橘完成签到,获得积分10
7秒前
Lucas应助Volta_zz采纳,获得10
9秒前
9秒前
时间丶完成签到,获得积分10
10秒前
皮卡丘发布了新的文献求助10
10秒前
irisjlj发布了新的文献求助10
10秒前
11秒前
顺顺安完成签到,获得积分10
11秒前
摩尔曼斯克完成签到,获得积分10
12秒前
虚拟的清炎完成签到 ,获得积分10
12秒前
12秒前
12秒前
sharkmelon应助Amo采纳,获得10
12秒前
13秒前
wabfye完成签到,获得积分20
13秒前
13秒前
星辰大海应助明天的我采纳,获得10
13秒前
iNk应助科科采纳,获得10
13秒前
14秒前
14秒前
zgrmws应助怡然的夏之采纳,获得10
15秒前
量子星尘发布了新的文献求助10
15秒前
15秒前
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667567
求助须知:如何正确求助?哪些是违规求助? 4886514
关于积分的说明 15120741
捐赠科研通 4826376
什么是DOI,文献DOI怎么找? 2583992
邀请新用户注册赠送积分活动 1538029
关于科研通互助平台的介绍 1496163