Econometrics for Modelling Climate Change

气候变化 温室气体 计量经济学 气候模式 计算机科学 离群值 经济 人工智能 生态学 生物
作者
Jennifer L. Castle,David F. Hendry
标识
DOI:10.1093/acrefore/9780190625979.013.675
摘要

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ikun6666发布了新的文献求助10
刚刚
朱比特完成签到,获得积分10
1秒前
jos完成签到,获得积分10
1秒前
5秒前
萧瑟秋风今又是完成签到 ,获得积分10
6秒前
6秒前
7秒前
sugar发布了新的文献求助10
9秒前
Manphie应助mei采纳,获得10
9秒前
忧郁小鸽子完成签到,获得积分10
9秒前
猫小咪完成签到,获得积分10
10秒前
hkh发布了新的文献求助10
10秒前
dy完成签到,获得积分10
11秒前
自信向梦完成签到,获得积分10
12秒前
杂草的生活完成签到,获得积分10
12秒前
能干戒指完成签到,获得积分10
13秒前
确幸完成签到,获得积分10
13秒前
啦啦啦啦完成签到 ,获得积分10
14秒前
踏实凝安完成签到,获得积分10
14秒前
14秒前
Overlap完成签到 ,获得积分10
15秒前
清清清完成签到 ,获得积分10
15秒前
Star完成签到,获得积分10
17秒前
petrichor完成签到,获得积分10
18秒前
怪默完成签到,获得积分10
18秒前
小宁同学发布了新的文献求助10
18秒前
浮游应助xwhl采纳,获得10
18秒前
执着的忆雪完成签到,获得积分10
19秒前
青青完成签到,获得积分10
19秒前
思苇完成签到,获得积分10
19秒前
老张完成签到,获得积分10
19秒前
mengshang完成签到,获得积分10
19秒前
知性的水杯完成签到 ,获得积分10
20秒前
20秒前
球球完成签到,获得积分10
20秒前
20秒前
豆腐完成签到,获得积分10
21秒前
sulin完成签到 ,获得积分10
22秒前
不关歆歆的事完成签到 ,获得积分10
22秒前
瑾辰完成签到,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.). Frederic G. Reamer 800
Holistic Discourse Analysis 600
Vertébrés continentaux du Crétacé supérieur de Provence (Sud-Est de la France) 600
A complete Carnosaur Skeleton From Zigong, Sichuan- Yangchuanosaurus Hepingensis 四川自贡一完整肉食龙化石-和平永川龙 600
Vertebrate Palaeontology, 5th Edition 500
Fiction e non fiction: storia, teorie e forme 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5325782
求助须知:如何正确求助?哪些是违规求助? 4466145
关于积分的说明 13895512
捐赠科研通 4358497
什么是DOI,文献DOI怎么找? 2394090
邀请新用户注册赠送积分活动 1387526
关于科研通互助平台的介绍 1358445