Econometrics for Modelling Climate Change

气候变化 温室气体 计量经济学 气候模式 计算机科学 离群值 经济 人工智能 生态学 生物
作者
Jennifer L. Castle,David F. Hendry
标识
DOI:10.1093/acrefore/9780190625979.013.675
摘要

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
自转无风完成签到,获得积分10
4秒前
8秒前
梧桐完成签到 ,获得积分10
10秒前
薏仁完成签到 ,获得积分10
10秒前
coolplex完成签到 ,获得积分10
13秒前
17秒前
李天恩完成签到 ,获得积分10
18秒前
深情安青应助残月初升采纳,获得10
19秒前
王饱饱完成签到 ,获得积分10
19秒前
Tina完成签到 ,获得积分10
20秒前
zhangbh1990完成签到 ,获得积分10
21秒前
《子非鱼》完成签到,获得积分10
22秒前
ranj发布了新的文献求助10
23秒前
一白完成签到 ,获得积分10
24秒前
诸觅双完成签到 ,获得积分10
25秒前
wubuking完成签到 ,获得积分10
27秒前
852应助CAST1347采纳,获得10
28秒前
哥哥喜欢格格完成签到 ,获得积分10
28秒前
29秒前
29秒前
Miia发布了新的文献求助10
33秒前
残月初升发布了新的文献求助10
34秒前
SH123完成签到 ,获得积分10
35秒前
交钱上班完成签到,获得积分10
39秒前
最好的完成签到,获得积分10
42秒前
GuangboXia完成签到,获得积分10
44秒前
轩辕一笑完成签到,获得积分10
46秒前
交钱上班发布了新的文献求助100
46秒前
CAST1347完成签到,获得积分10
46秒前
49秒前
残月初升完成签到,获得积分10
51秒前
乃惜完成签到,获得积分10
52秒前
ranj发布了新的文献求助10
53秒前
amber完成签到 ,获得积分10
58秒前
Hello应助借两颗星星采纳,获得10
58秒前
59秒前
MWSURE完成签到,获得积分10
1分钟前
scl发布了新的文献求助10
1分钟前
米里迷路完成签到 ,获得积分10
1分钟前
LiangRen完成签到 ,获得积分10
1分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 500
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3150630
求助须知:如何正确求助?哪些是违规求助? 2802177
关于积分的说明 7846192
捐赠科研通 2459431
什么是DOI,文献DOI怎么找? 1309256
科研通“疑难数据库(出版商)”最低求助积分说明 628793
版权声明 601757