亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Econometrics for Modelling Climate Change

气候变化 温室气体 计量经济学 气候模式 计算机科学 离群值 经济 人工智能 生态学 生物
作者
Jennifer L. Castle,David F. Hendry
标识
DOI:10.1093/acrefore/9780190625979.013.675
摘要

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Owen应助科研通管家采纳,获得10
4秒前
科研通AI2S应助科研通管家采纳,获得10
4秒前
科研通AI5应助科研通管家采纳,获得10
4秒前
10秒前
14秒前
调皮芫发布了新的文献求助10
16秒前
量子星尘发布了新的文献求助10
26秒前
Ava应助Yanz采纳,获得10
1分钟前
pegasus0802完成签到,获得积分10
1分钟前
1分钟前
Yanz发布了新的文献求助10
2分钟前
脑洞疼应助科研通管家采纳,获得10
2分钟前
充电宝应助科研通管家采纳,获得10
2分钟前
奈思完成签到 ,获得积分10
2分钟前
Yanz完成签到,获得积分10
2分钟前
2分钟前
来活发布了新的文献求助10
2分钟前
2分钟前
YOGA1115发布了新的文献求助10
2分钟前
2分钟前
来活完成签到,获得积分10
2分钟前
华仔应助TiAmo采纳,获得10
3分钟前
3分钟前
3分钟前
TiAmo发布了新的文献求助10
3分钟前
Kevin完成签到,获得积分10
3分钟前
3分钟前
4分钟前
大个应助科研通管家采纳,获得10
4分钟前
4分钟前
彭于晏应助TiAmo采纳,获得10
4分钟前
oleskarabach发布了新的文献求助10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
TiAmo发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
辣味锅包肉完成签到,获得积分10
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Handbook of Milkfat Fractionation Technology and Application, by Kerry E. Kaylegian and Robert C. Lindsay, AOCS Press, 1995 1000
A novel angiographic index for predicting the efficacy of drug-coated balloons in small vessels 500
Textbook of Neonatal Resuscitation ® 500
The Affinity Designer Manual - Version 2: A Step-by-Step Beginner's Guide 500
Affinity Designer Essentials: A Complete Guide to Vector Art: Your Ultimate Handbook for High-Quality Vector Graphics 500
Optimisation de cristallisation en solution de deux composés organiques en vue de leur purification 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5078209
求助须知:如何正确求助?哪些是违规求助? 4297037
关于积分的说明 13387745
捐赠科研通 4119669
什么是DOI,文献DOI怎么找? 2256149
邀请新用户注册赠送积分活动 1260461
关于科研通互助平台的介绍 1194019