Econometrics for Modelling Climate Change

气候变化 温室气体 计量经济学 气候模式 计算机科学 离群值 经济 人工智能 生态学 生物
作者
Jennifer L. Castle,David F. Hendry
标识
DOI:10.1093/acrefore/9780190625979.013.675
摘要

Shared features of economic and climate time series imply that tools for empirically modeling nonstationary economic outcomes are also appropriate for studying many aspects of observational climate-change data. Greenhouse gas emissions, such as carbon dioxide, nitrous oxide, and methane, are a major cause of climate change as they cumulate in the atmosphere and reradiate the sun’s energy. As these emissions are currently mainly due to economic activity, economic and climate time series have commonalities, including considerable inertia, stochastic trends, and distributional shifts, and hence the same econometric modeling approaches can be applied to analyze both phenomena. Moreover, both disciplines lack complete knowledge of their respective data-generating processes (DGPs), so model search retaining viable theory but allowing for shifting distributions is important. Reliable modeling of both climate and economic-related time series requires finding an unknown DGP (or close approximation thereto) to represent multivariate evolving processes subject to abrupt shifts. Consequently, to ensure that DGP is nested within a much larger set of candidate determinants, model formulations to search over should comprise all potentially relevant variables, their dynamics, indicators for perturbing outliers, shifts, trend breaks, and nonlinear functions, while retaining well-established theoretical insights. Econometric modeling of climate-change data requires a sufficiently general model selection approach to handle all these aspects. Machine learning with multipath block searches commencing from very general specifications, usually with more candidate explanatory variables than observations, to discover well-specified and undominated models of the nonstationary processes under analysis, offers a rigorous route to analyzing such complex data. To do so requires applying appropriate indicator saturation estimators (ISEs), a class that includes impulse indicators for outliers, step indicators for location shifts, multiplicative indicators for parameter changes, and trend indicators for trend breaks. All ISEs entail more candidate variables than observations, often by a large margin when implementing combinations, yet can detect the impacts of shifts and policy interventions to avoid nonconstant parameters in models, as well as improve forecasts. To characterize nonstationary observational data, one must handle all substantively relevant features jointly: A failure to do so leads to nonconstant and mis-specified models and hence incorrect theory evaluation and policy analyses.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
盛子骁发布了新的文献求助10
刚刚
1秒前
1秒前
1秒前
忒寒碜完成签到,获得积分10
2秒前
乐观期待完成签到,获得积分10
2秒前
2425发布了新的文献求助10
3秒前
酷酷学完成签到,获得积分10
3秒前
3秒前
3秒前
fafamimireredo完成签到,获得积分10
4秒前
bubu完成签到,获得积分10
4秒前
4秒前
5秒前
6秒前
6秒前
呼呼发布了新的文献求助10
7秒前
完美世界应助zjiang采纳,获得10
7秒前
小聂发布了新的文献求助10
7秒前
7秒前
Cannel完成签到,获得积分20
8秒前
南瓜头完成签到 ,获得积分10
8秒前
66289发布了新的文献求助10
8秒前
淡淡的豁完成签到,获得积分0
9秒前
鸢尾蓝完成签到,获得积分10
9秒前
10秒前
SYLH应助Thunnus001采纳,获得50
10秒前
乐观的雅彤完成签到,获得积分10
10秒前
奥暖将完成签到,获得积分10
10秒前
朴实的凡阳完成签到,获得积分10
10秒前
11秒前
bkagyin应助自然有手就行采纳,获得10
11秒前
英姑应助haha采纳,获得30
11秒前
mj01完成签到,获得积分10
12秒前
12秒前
冰冰完成签到 ,获得积分10
12秒前
沄霄之上发布了新的文献求助10
12秒前
13秒前
Wayne完成签到,获得积分10
13秒前
14秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 330
Aktuelle Entwicklungen in der linguistischen Forschung 300
Current Perspectives on Generative SLA - Processing, Influence, and Interfaces 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3986641
求助须知:如何正确求助?哪些是违规求助? 3529109
关于积分的说明 11243520
捐赠科研通 3267633
什么是DOI,文献DOI怎么找? 1803801
邀请新用户注册赠送积分活动 881207
科研通“疑难数据库(出版商)”最低求助积分说明 808582