汽油
柴油
排放清单
环境科学
氮氧化物
废气
蒸发
空气污染
柴油机排气
环境化学
大气科学
环境工程
气象学
化学
废物管理
工程类
地理
有机化学
地质学
燃烧
作者
Cheng Huang,H. L. Wang,Li Li,Q. Wang,Qian Lu,J. A. de Gouw,Min Zhou,Shengao Jing,Jun Lü,C. H. Chen
标识
DOI:10.5194/acpd-15-7977-2015
摘要
Abstract. VOC species from vehicle exhaust and gas evaporation were investigated by chassis dynamometer and on-road measurements of 9 gasoline vehicles, 7 diesel vehicles, 5 motorcycles, and 4 gas evaporation samples. The SOA mass yields of gasoline, diesel, motorcycle exhausts, and gas evaporation were calculated based on the mixing ratio of individual VOC species. The SOA mass yields of gasoline and motorcycle exhaust were similar to the results of the published smog chamber study with the exception of that of diesel exhaust was 20% lower than experimental data (Gordon et al., 2013, 2014a, b). This suggests the requirement for further research on SVOC or LVOC emissions. A vehicular emission inventory was compiled based on a local survey of vehicle mileage traveled and real-world measurements of vehicle emission factors. The inventory-based vehicular initial emission ratio of OA to CO was 15.6 μg m−3 ppmv−1. The OA production rate reached 22.3 and 42.7 μg m−3 ppmv−1 under high-NOx and low-NOx conditions, respectively. To determine the vehicular contribution to OA pollution, the inventory-based OA formation ratios for vehicles were calculated with a photochemical-age-based parameterization method and compared with the observation-based OA formation ratios in the urban atmosphere of Shanghai. The results indicated that VOC emissions from vehicle exhaust and gas evaporation only explained 15 and 22% of the total organic aerosols observed in summer and winter, respectively. SOA production only accounted for 25 and 18% of the total vehicular OA formation in summer and winter. VOC emissions from gasoline vehicles contribute 21–38% of vehicular OA formation after 6–24 h of photochemical aging. The results suggest that vehicle emissions are an important contributor to OA pollution in the urban atmosphere of Shanghai. However, a large number of OA mass in the atmosphere still cannot be explained in this study. SOA formation contributions from other sources (e.g. coal burning, biomass burning, cooking, dust, etc.) as well as IVOCs and SVOCs from the combustion sources need to be considered in future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI