亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

An advanced soil organic carbon content prediction model via fused temporal-spatial-spectral (TSS) information based on machine learning and deep learning algorithms

遥感 计算机科学 内容(测量理论) 土壤碳 人工智能 环境科学 算法 机器学习 土壤科学 地质学 土壤水分 数学 数学分析
作者
Xiangtian Meng,Yilin Bao,Yiang Wang,Xinle Zhang,Huanjun Liu
出处
期刊:Remote Sensing of Environment [Elsevier]
卷期号:280: 113166-113166 被引量:26
标识
DOI:10.1016/j.rse.2022.113166
摘要

Knowledge of the soil organic carbon (SOC) content is critical for environmental sustainability and carbon neutrality. With the development of remote sensing data and prediction models, the comprehensive utilization of multisource remote sensing data based on a fusion approach and testing its effectiveness in SOC content prediction is an interesting and challenging topic. However, there is no evidence showing the role of different data sources in the SOC content prediction process. In this study, a total of 796 topsoil samples (0–20 cm) were collected at Site 1, and 111 samples were collected at Site 2. The samples from Site 2 were used to verify the transferability of the prediction model established at Site 1. The discrete wavelet transform based on the regional energy weight (RW-DWT) and spectral band segmentation methods were used to fuse the temporal information of 10 scenes of Landsat multispectral image data from 2009 to 2019, the spatial information of topography data and the spectral information of GaoFen-5 hyperspectral images. Then, the SOC content prediction models were established by temporal-spatial-spectral (TSS) information using partial least squares regression (PLSR), random forest (RF) and convolutional neural network (CNN) algorithms. The results indicated that the optimal SOC content prediction model consisted of TSS information as input and the CNN as the prediction model, where the lowest root mean square error (RMSE) was 2.49 g kg −1 , the highest coefficient of determination (R 2 ) was 0.86 and the ratio of performance to interquartile distance (RPIQ) was 1.91. Next, the order of the effect was spectral > temporal > spatial information in terms of SOC content prediction, and their roles in improving the accuracy of the model were 26.79%, 19.64% and 14.29%, respectively, with the CNN model. In addition, the CNN yielded a higher prediction accuracy than PLSR and RF regardless of which group of input variables was used. The average RMSE of the CNN was 0.42 g kg −1 lower than that of the RF, and the average R 2 and RPIQ were 9.25% and 0.14 higher, respectively, than those of the RF. The above conclusions were confirmed in the verification area, namely, the optimal SOC content prediction model at Site 2 consisted of TSS information as input and the CNN as the prediction model (RMSE = 1.01 g kg −1 , R 2 = 0.76 and RPIQ = 1.41). Therefore, the novel method proposed in this study is robust. This work provides a new idea for predicting soil properties by the comprehensive use of multisource remote sensing images and deep learning algorithms in the future. • The ability of TSS information in SOC prediction is determined. • The SOC prediction model with high-accuracy and high-transferability is established. • The method of temporal, spatial, spectral information fusion is improved. • The role of temporal, spatial, spectral information for SOC prediction is revealed. • “Data fusion + deep learning” strategy provide a new paradigm for SOC prediction.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
充电宝应助执着夏山采纳,获得10
6秒前
17秒前
1分钟前
良辰应助科研通管家采纳,获得10
1分钟前
1分钟前
甜蜜发带完成签到 ,获得积分10
1分钟前
1分钟前
执着夏山发布了新的文献求助10
2分钟前
2分钟前
一墨完成签到,获得积分10
2分钟前
2分钟前
清爽夜雪完成签到,获得积分10
2分钟前
从容栾发布了新的文献求助10
2分钟前
科研搬运工完成签到,获得积分10
2分钟前
无花果应助Demi_Ming采纳,获得10
2分钟前
2分钟前
脑洞疼应助科研通管家采纳,获得10
3分钟前
良辰应助科研通管家采纳,获得10
3分钟前
3分钟前
Demi_Ming发布了新的文献求助10
3分钟前
3分钟前
3分钟前
3分钟前
执着夏山发布了新的文献求助10
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
甜梨完成签到,获得积分10
5分钟前
5分钟前
5分钟前
俭朴的大有完成签到,获得积分10
5分钟前
TXZ06完成签到,获得积分10
5分钟前
5分钟前
6分钟前
执着夏山发布了新的文献求助100
6分钟前
6分钟前
CipherSage应助科研通管家采纳,获得10
7分钟前
Z小姐完成签到 ,获得积分10
7分钟前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
叶剑英与华南分局档案史料 500
Foreign Policy of the French Second Empire: A Bibliography 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146739
求助须知:如何正确求助?哪些是违规求助? 2798045
关于积分的说明 7826588
捐赠科研通 2454566
什么是DOI,文献DOI怎么找? 1306391
科研通“疑难数据库(出版商)”最低求助积分说明 627708
版权声明 601527