Predicting Diarrhoea Among Children Under Five Years Using Machine Learning Techniques

心理干预 逻辑回归 医学 决策树 环境卫生 卫生用品 五岁以下 机器学习 计算机科学 护理部 病理 内科学
作者
Elliot Mbunge,Garikayi B. Chemhaka,John Batani,Caroline Gurajena,Tafadzwa Dzinamarira,Godfrey Musuka,Innocent Chingombe
出处
期刊:Lecture notes in networks and systems 卷期号:: 94-109 被引量:9
标识
DOI:10.1007/978-3-031-09076-9_9
摘要

Globally, diarrhoea remains a significant cause of death among children under five years. Several preventive interventions such as hygiene practice, safe drinking water, rotavirus vaccination and health promotion were implemented to reduce the catastrophic impact of diarrhoea. However, effective tackling of the diarrhoeal disease requires robust preventive interventions and computational techniques to predict diarrhoea among children under five years using risk factors. Therefore, this study applied a decision tree classifier, logistic regression and support vector machines to predict diarrhoea among children under five years using the recent Zimbabwe Demographic Health Survey dataset. The study revealed that logistic regression out-performed other diarrhoea predictive models with the prediction accuracy of 85%, precision of 86%, recall of 100% and the F1-score of 94%. Support vector machines also performed better in predicting diarrhoea with predicting accuracy of 84%, precision of 85%, recall of 100% and F1-score of 92%. The study also revealed that understanding risk factors such as climatic or meteorological, socioeconomic and demographic factors plays a tremendous role in tackling diarrhoea among under-fives. The application of machine learning techniques can assist policymakers in designing effective and adaptive diarrhoea preventive interventions, control programmes and strategies for tackling diarrhoea.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
五更风完成签到,获得积分10
2秒前
2秒前
BisonHamster完成签到,获得积分10
2秒前
2秒前
Lucas应助冯月采纳,获得10
3秒前
PDIF-CN2完成签到,获得积分10
3秒前
3秒前
邵燚铭完成签到 ,获得积分10
3秒前
BR关闭了BR文献求助
3秒前
ln177发布了新的文献求助10
4秒前
5秒前
mouse_pear发布了新的文献求助10
5秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
xunpeng发布了新的文献求助10
10秒前
10秒前
11秒前
mo完成签到,获得积分10
11秒前
12秒前
13秒前
13秒前
13秒前
西瓜汁完成签到,获得积分10
14秒前
1Aaa发布了新的文献求助10
14秒前
桐桐应助Tao122采纳,获得10
14秒前
15秒前
李宇超发布了新的文献求助10
15秒前
15秒前
15秒前
15秒前
Roseaiwade发布了新的文献求助10
15秒前
BR关闭了BR文献求助
15秒前
卡尔斯鱼完成签到,获得积分10
16秒前
SciGPT应助ln177采纳,获得10
16秒前
上官若男应助我要发文章采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
Natural History of Mantodea 螳螂的自然史 900
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3313400
求助须知:如何正确求助?哪些是违规求助? 2945747
关于积分的说明 8526962
捐赠科研通 2621480
什么是DOI,文献DOI怎么找? 1433622
科研通“疑难数据库(出版商)”最低求助积分说明 665057
邀请新用户注册赠送积分活动 650600