Cycle-SNSPGAN: Towards Real-World Image Dehazing via Cycle Spectral Normalized Soft Likelihood Estimation Patch GAN

计算机科学 稳健性(进化) 人工智能 杠杆(统计) 计算机视觉 图像(数学) 图像编辑 生物化学 化学 基因
作者
Yongzhen Wang,Xuefeng Yan,Donghai Guan,Mingqiang Wei,Yiping Chen,Xiao–Ping Zhang,Jonathan Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 20368-20382 被引量:49
标识
DOI:10.1109/tits.2022.3170328
摘要

Image dehazing is a common operation in autonomous driving, traffic monitoring and surveillance. Learning-based image dehazing has achieved excellent performance recently. However, it is nearly impossible to capture pairs of hazy/clean images from the real world to train an image dehazing network. Most of existing dehazing models that are learnt from synthetically generated hazy images generalize poorly on real-world hazy scenarios due to the obvious domain shift. To deal with this unpaired problem arisen by real-world hazy images, we present Cycle Spectral Normalized Soft likelihood estimation Patch Generative Adversarial Network (Cycle-SNSPGAN) for image dehazing. Cycle-SNSPGAN is an unsupervised dehazing framework to boost the generalization ability on real-world hazy images. To leverage unpaired samples of real-world hazy images without relying on their clean counterparts, we design an SN-Soft-Patch GAN and exploit a new cyclic self-perceptual loss which avoids using the ground-truth image to compute the perceptual similarity. Moreover, a significant color loss is adopted to brighten the dehazed images as human expects. Both visual and numerical results show clear improvements of the proposed Cycle-SNSPGAN over state-of-the-arts in terms of hazy-robustness and image detail recovery, with even only a small dataset training our Cycle-SNSPGAN. Code has been available at https://github.com/yz-wang/Cycle-SNSPGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Amber完成签到,获得积分10
1秒前
FashionBoy应助轻松的雨旋采纳,获得10
2秒前
ZXT发布了新的文献求助10
3秒前
4秒前
科研通AI2S应助朱朱采纳,获得10
4秒前
5秒前
6秒前
斯文败类应助vivien采纳,获得10
6秒前
6秒前
毛毛弟完成签到 ,获得积分10
6秒前
SXR完成签到,获得积分10
7秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
竹筏过海应助科研通管家采纳,获得30
9秒前
竹筏过海应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
烟花应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
英姑应助科研通管家采纳,获得10
9秒前
9秒前
11秒前
12秒前
ltr2014应助蓝色条纹衫采纳,获得20
12秒前
klb13应助仁爱曼梅采纳,获得10
14秒前
漫天繁星发布了新的文献求助10
18秒前
柏锦程完成签到 ,获得积分10
22秒前
在水一方应助伊尔暗色采纳,获得10
22秒前
Zcj完成签到,获得积分10
23秒前
科研毛毛虫完成签到,获得积分10
24秒前
漫天繁星完成签到,获得积分10
25秒前
26秒前
27秒前
不问悲欢发布了新的文献求助10
28秒前
Kelo应助Zcj采纳,获得10
28秒前
29秒前
刘蓓蓓完成签到,获得积分10
31秒前
vivien完成签到,获得积分20
31秒前
32秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3262556
求助须知:如何正确求助?哪些是违规求助? 2903194
关于积分的说明 8324436
捐赠科研通 2573293
什么是DOI,文献DOI怎么找? 1398130
科研通“疑难数据库(出版商)”最低求助积分说明 654019
邀请新用户注册赠送积分活动 632623