计算机科学
稳健性(进化)
人工智能
杠杆(统计)
计算机视觉
图像(数学)
图像编辑
生物化学
化学
基因
作者
Yongzhen Wang,Xuefeng Yan,Donghai Guan,Mingqiang Wei,Yiping Chen,Xiao–Ping Zhang,Jonathan Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems
[Institute of Electrical and Electronics Engineers]
日期:2022-05-02
卷期号:23 (11): 20368-20382
被引量:49
标识
DOI:10.1109/tits.2022.3170328
摘要
Image dehazing is a common operation in autonomous driving, traffic monitoring and surveillance. Learning-based image dehazing has achieved excellent performance recently. However, it is nearly impossible to capture pairs of hazy/clean images from the real world to train an image dehazing network. Most of existing dehazing models that are learnt from synthetically generated hazy images generalize poorly on real-world hazy scenarios due to the obvious domain shift. To deal with this unpaired problem arisen by real-world hazy images, we present Cycle Spectral Normalized Soft likelihood estimation Patch Generative Adversarial Network (Cycle-SNSPGAN) for image dehazing. Cycle-SNSPGAN is an unsupervised dehazing framework to boost the generalization ability on real-world hazy images. To leverage unpaired samples of real-world hazy images without relying on their clean counterparts, we design an SN-Soft-Patch GAN and exploit a new cyclic self-perceptual loss which avoids using the ground-truth image to compute the perceptual similarity. Moreover, a significant color loss is adopted to brighten the dehazed images as human expects. Both visual and numerical results show clear improvements of the proposed Cycle-SNSPGAN over state-of-the-arts in terms of hazy-robustness and image detail recovery, with even only a small dataset training our Cycle-SNSPGAN. Code has been available at https://github.com/yz-wang/Cycle-SNSPGAN .
科研通智能强力驱动
Strongly Powered by AbleSci AI