Cycle-SNSPGAN: Towards Real-World Image Dehazing via Cycle Spectral Normalized Soft Likelihood Estimation Patch GAN

计算机科学 稳健性(进化) 人工智能 杠杆(统计) 计算机视觉 图像(数学) 图像编辑 生物化学 化学 基因
作者
Yongzhen Wang,Xuefeng Yan,Donghai Guan,Mingqiang Wei,Yiping Chen,Xiao–Ping Zhang,Jonathan Li
出处
期刊:IEEE Transactions on Intelligent Transportation Systems [Institute of Electrical and Electronics Engineers]
卷期号:23 (11): 20368-20382 被引量:58
标识
DOI:10.1109/tits.2022.3170328
摘要

Image dehazing is a common operation in autonomous driving, traffic monitoring and surveillance. Learning-based image dehazing has achieved excellent performance recently. However, it is nearly impossible to capture pairs of hazy/clean images from the real world to train an image dehazing network. Most of existing dehazing models that are learnt from synthetically generated hazy images generalize poorly on real-world hazy scenarios due to the obvious domain shift. To deal with this unpaired problem arisen by real-world hazy images, we present Cycle Spectral Normalized Soft likelihood estimation Patch Generative Adversarial Network (Cycle-SNSPGAN) for image dehazing. Cycle-SNSPGAN is an unsupervised dehazing framework to boost the generalization ability on real-world hazy images. To leverage unpaired samples of real-world hazy images without relying on their clean counterparts, we design an SN-Soft-Patch GAN and exploit a new cyclic self-perceptual loss which avoids using the ground-truth image to compute the perceptual similarity. Moreover, a significant color loss is adopted to brighten the dehazed images as human expects. Both visual and numerical results show clear improvements of the proposed Cycle-SNSPGAN over state-of-the-arts in terms of hazy-robustness and image detail recovery, with even only a small dataset training our Cycle-SNSPGAN. Code has been available at https://github.com/yz-wang/Cycle-SNSPGAN .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
农夫果园完成签到,获得积分10
3秒前
共享精神应助博修采纳,获得200
5秒前
万能图书馆应助我先睡了采纳,获得10
6秒前
醉熏的伊发布了新的文献求助10
7秒前
刘一鸣发布了新的文献求助10
8秒前
8秒前
小马甲应助boluohu采纳,获得10
8秒前
bkagyin应助犹豫的砖家采纳,获得10
9秒前
10秒前
11秒前
11秒前
未来可期发布了新的文献求助10
12秒前
冷傲以珊完成签到,获得积分10
12秒前
12秒前
今后应助刘一鸣采纳,获得10
12秒前
green发布了新的文献求助10
13秒前
13秒前
bkagyin应助单雅慧采纳,获得10
14秒前
16秒前
kai发布了新的文献求助10
17秒前
19秒前
jianghao发布了新的文献求助10
19秒前
蒲云海发布了新的文献求助10
19秒前
路一帆发布了新的社区帖子
19秒前
green完成签到,获得积分10
20秒前
20秒前
20秒前
xu完成签到,获得积分10
23秒前
jianghao完成签到,获得积分10
23秒前
humorlife完成签到,获得积分10
23秒前
elang完成签到,获得积分20
23秒前
25秒前
26秒前
热心市民小红花应助linkman采纳,获得50
27秒前
29秒前
折光应助东风徐来采纳,获得30
30秒前
31秒前
ygh完成签到,获得积分10
31秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3950968
求助须知:如何正确求助?哪些是违规求助? 3496346
关于积分的说明 11081568
捐赠科研通 3226849
什么是DOI,文献DOI怎么找? 1783983
邀请新用户注册赠送积分活动 868089
科研通“疑难数据库(出版商)”最低求助积分说明 800993