Soccer coaches vs. sport science and medicine staff: who can more accurately predict the skeletal age of high-level youth soccer players?

年龄组 背景(考古学) 运动医学 人口学 骨龄 俱乐部 心理学 医学 老年学 物理疗法 地理 内科学 解剖 社会学 考古
作者
Ludwig Ruf,Stefan Altmann,Christian U.A. Kloss,Sascha Härtel
出处
期刊:Science & medicine in football [Taylor & Francis]
卷期号:7 (3): 253-262 被引量:3
标识
DOI:10.1080/24733938.2022.2100461
摘要

Biological maturity is an important aspect in the context of talent identification and development processes within elite youth soccer players. The aim of this study was to investigate the accuracy of soccer coaches (SC) as well as sports science and medicine staff (SSMS) to predict the skeletal age of high-level youth soccer players. We also aimed to evaluate the inter-rater reliability of the skeletal age predictions among the SC and SSMS. Skeletal ages were collected for 89 male academy soccer players registered for the U12 to U16 age groups at a professional German Bundesliga club. In addition, 12 SC and five SSMS provided their skeletal age predictions for each player of their respective age group. Standardised mean differences and equivalence testing were performed between actual and predicted skeletal ages. Intra-class correlations (ICC) were calculated to assess the inter-rater reliability. For the SC, differences between predicted and actual skeletal ages were trivial and equivalent to zero for the U12, U14, and entire sample, while for the SSMS, standardised mean differences ranged from trivial to small for all age groups and the entire sample. ICC for skeletal age predictions for the entire sample was good among the SC and excellent among the SSMS, but was somewhat lower when age groups were analysed separately. While, on average, predictions were close to the actual skeletal age, SC were slightly more accurate than the SSMS. However, variability among the SSMS was large on an individual level.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Fin2046完成签到,获得积分10
刚刚
学不懂数学完成签到,获得积分10
1秒前
莓烦恼完成签到 ,获得积分10
2秒前
3秒前
白江虎完成签到,获得积分10
4秒前
5秒前
阳光的凌雪完成签到 ,获得积分10
6秒前
文艺小馒头完成签到,获得积分10
6秒前
赵赵发布了新的文献求助20
7秒前
橙子发布了新的文献求助10
9秒前
10秒前
Wsyyy完成签到 ,获得积分10
12秒前
12秒前
ganjqly完成签到,获得积分10
12秒前
董惠玲66发布了新的文献求助10
13秒前
g7001完成签到,获得积分10
15秒前
blue发布了新的文献求助10
15秒前
刘铭晨完成签到,获得积分10
15秒前
XYZ完成签到 ,获得积分10
16秒前
wmszhd完成签到,获得积分10
16秒前
付艳完成签到,获得积分10
16秒前
CAOHOU应助论文顺利采纳,获得10
17秒前
nancy93228完成签到 ,获得积分10
18秒前
搜集达人应助JW采纳,获得10
20秒前
???完成签到,获得积分10
22秒前
优秀的白曼完成签到,获得积分10
24秒前
王小西发布了新的文献求助10
25秒前
碧蓝莫言完成签到 ,获得积分10
27秒前
清璃完成签到 ,获得积分10
28秒前
虚心的寒梦完成签到,获得积分10
28秒前
秋秋发布了新的文献求助10
28秒前
kkk完成签到,获得积分10
30秒前
bnhh完成签到,获得积分10
30秒前
Betty应助lindahuang采纳,获得10
31秒前
ilk666完成签到,获得积分10
32秒前
小王同学发布了新的文献求助10
32秒前
奶油布丁完成签到,获得积分10
35秒前
酶没美镁完成签到,获得积分10
35秒前
天天快乐应助李治海采纳,获得10
36秒前
星辰大海应助lll采纳,获得10
36秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038303
求助须知:如何正确求助?哪些是违规求助? 3576013
关于积分的说明 11374210
捐赠科研通 3305780
什么是DOI,文献DOI怎么找? 1819322
邀请新用户注册赠送积分活动 892672
科研通“疑难数据库(出版商)”最低求助积分说明 815029