亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-expert Attention Network with Unsupervised Aggregation for long-tailed fault diagnosis under speed variation

计算机科学 变化(天文学) 断层(地质) 人工智能 机器学习 数据挖掘 模式识别(心理学) 天体物理学 物理 地质学 地震学
作者
Zhuohang Chen,Jinglong Chen,Zongliang Xie,Enyong Xu,Yong Feng,Shen Liu
出处
期刊:Knowledge Based Systems [Elsevier]
卷期号:252: 109393-109393 被引量:19
标识
DOI:10.1016/j.knosys.2022.109393
摘要

The great achievements of intelligent fault diagnosis technique are based on the balance of different health conditions. However, in practical engineering, difficulty in acquisition of fault signals results in the long-tailed distribution of data which leads to overfitting problems. Meanwhile, domain shift caused by speed variation further deteriorates the reliability of the model. To overcome these challenges, a Multi-expert Attention Network with Unsupervised Aggregation (UA-MAN) is proposed for long-tailed fault diagnosis under speed variation. Specifically, each expert network consists of Transformer blocks and utilizes the global dependency modeling capability of self-attention calculation to suppress the domain shift. To compensate for the lack of self-attention calculation for detailed feature acquisition, a convolutional network with residual connection is designed as the shared backbone before each expert. Additionally, the expert networks are trained with different loss functions which allows each expert can adapt to diverse class distributions. Finally, an unsupervised contrastive learning technique is developed to aggregate experts to handle the test dataset with unknown class distribution. The superiority and reliability of the proposed method is verified under different class distributions in two datasets. Furthermore, ablation experiments demonstrate that unsupervised aggregation adapt to the varied distribution of the test set effectively. • A Multi-expert Attention Network with Unsupervised Aggregation (UA-MAN) was proposed for long-tailed fault diagnosis under speed variation. • Multi-expert network is designed to learn capabilities of tackling different class distributions from the single long-tailed train dataset. • Swin transformer block is adopted as the backbone for each expert network to suppress domain shift caused by speed variation. • The performance of UA-MAN is verified with two comparative case studies under speed variation with different imbalanced distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Yam完成签到,获得积分10
55秒前
1分钟前
tsn发布了新的文献求助10
1分钟前
1分钟前
tsn发布了新的文献求助10
1分钟前
悦耳十三发布了新的文献求助10
3分钟前
小蘑菇应助悦耳十三采纳,获得10
3分钟前
4分钟前
悦耳十三发布了新的文献求助10
4分钟前
星辰大海应助科研通管家采纳,获得30
6分钟前
fuueer完成签到 ,获得积分10
6分钟前
Vincent完成签到 ,获得积分10
7分钟前
zzp完成签到 ,获得积分10
7分钟前
xwx关闭了xwx文献求助
9分钟前
xwx关闭了xwx文献求助
10分钟前
10分钟前
10分钟前
Yportne完成签到,获得积分10
10分钟前
Yportne发布了新的文献求助10
10分钟前
Ava应助交钱上班采纳,获得10
10分钟前
专一的芒果完成签到 ,获得积分10
12分钟前
ZXD1989完成签到 ,获得积分10
12分钟前
13分钟前
交钱上班发布了新的文献求助10
13分钟前
15分钟前
姚老表完成签到,获得积分10
15分钟前
15分钟前
香蕉觅云应助端庄的饼干采纳,获得10
15分钟前
端庄的饼干完成签到,获得积分20
15分钟前
科研通AI2S应助spark810采纳,获得10
18分钟前
19分钟前
20分钟前
凭风听纸鸢完成签到,获得积分10
21分钟前
mengliu完成签到,获得积分10
21分钟前
kuoping完成签到,获得积分10
21分钟前
无花果应助科研通管家采纳,获得10
22分钟前
ling361完成签到,获得积分10
22分钟前
早晚完成签到 ,获得积分10
22分钟前
Mipe完成签到,获得积分10
23分钟前
Demi_Ming完成签到,获得积分10
23分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
XAFS for Everyone (2nd Edition) 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3133970
求助须知:如何正确求助?哪些是违规求助? 2784836
关于积分的说明 7768686
捐赠科研通 2440205
什么是DOI,文献DOI怎么找? 1297295
科研通“疑难数据库(出版商)”最低求助积分说明 624920
版权声明 600792