亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-expert Attention Network with Unsupervised Aggregation for long-tailed fault diagnosis under speed variation

计算机科学 变化(天文学) 断层(地质) 人工智能 机器学习 数据挖掘 模式识别(心理学) 天体物理学 物理 地质学 地震学
作者
Zhuohang Chen,Jinglong Chen,Zongliang Xie,Enyong Xu,Yong Feng,Shen Liu
出处
期刊:Knowledge Based Systems [Elsevier BV]
卷期号:252: 109393-109393 被引量:19
标识
DOI:10.1016/j.knosys.2022.109393
摘要

The great achievements of intelligent fault diagnosis technique are based on the balance of different health conditions. However, in practical engineering, difficulty in acquisition of fault signals results in the long-tailed distribution of data which leads to overfitting problems. Meanwhile, domain shift caused by speed variation further deteriorates the reliability of the model. To overcome these challenges, a Multi-expert Attention Network with Unsupervised Aggregation (UA-MAN) is proposed for long-tailed fault diagnosis under speed variation. Specifically, each expert network consists of Transformer blocks and utilizes the global dependency modeling capability of self-attention calculation to suppress the domain shift. To compensate for the lack of self-attention calculation for detailed feature acquisition, a convolutional network with residual connection is designed as the shared backbone before each expert. Additionally, the expert networks are trained with different loss functions which allows each expert can adapt to diverse class distributions. Finally, an unsupervised contrastive learning technique is developed to aggregate experts to handle the test dataset with unknown class distribution. The superiority and reliability of the proposed method is verified under different class distributions in two datasets. Furthermore, ablation experiments demonstrate that unsupervised aggregation adapt to the varied distribution of the test set effectively. • A Multi-expert Attention Network with Unsupervised Aggregation (UA-MAN) was proposed for long-tailed fault diagnosis under speed variation. • Multi-expert network is designed to learn capabilities of tackling different class distributions from the single long-tailed train dataset. • Swin transformer block is adopted as the backbone for each expert network to suppress domain shift caused by speed variation. • The performance of UA-MAN is verified with two comparative case studies under speed variation with different imbalanced distributions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
30秒前
Lin发布了新的文献求助10
37秒前
40秒前
SCINEXUS完成签到,获得积分0
1分钟前
1分钟前
量子星尘发布了新的文献求助10
1分钟前
老迟到的梦旋完成签到 ,获得积分10
1分钟前
1分钟前
负责以山完成签到 ,获得积分10
1分钟前
科研通AI5应助科研通管家采纳,获得10
1分钟前
cc应助科研通管家采纳,获得10
1分钟前
一只小锦鲤完成签到 ,获得积分10
2分钟前
西山菩提完成签到,获得积分10
2分钟前
量子星尘发布了新的文献求助20
3分钟前
lixuebin完成签到 ,获得积分10
3分钟前
3分钟前
3分钟前
sujingbo发布了新的文献求助100
3分钟前
sofardli发布了新的文献求助10
3分钟前
3分钟前
charliechen完成签到 ,获得积分10
4分钟前
sofardli完成签到,获得积分10
4分钟前
量子星尘发布了新的文献求助10
4分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
碗碗豆喵完成签到 ,获得积分10
5分钟前
量子星尘发布了新的文献求助10
5分钟前
5分钟前
5分钟前
5分钟前
贝儿发布了新的文献求助10
5分钟前
大模型应助贝儿采纳,获得10
6分钟前
矮小的珠发布了新的文献求助10
6分钟前
小二郎应助矮小的珠采纳,获得10
6分钟前
6分钟前
阿超完成签到 ,获得积分10
6分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3957065
求助须知:如何正确求助?哪些是违规求助? 3503084
关于积分的说明 11111255
捐赠科研通 3234124
什么是DOI,文献DOI怎么找? 1787751
邀请新用户注册赠送积分活动 870772
科研通“疑难数据库(出版商)”最低求助积分说明 802264