Unsupervised Machine Learning for Assessment of Left Ventricular Diastolic Function and Risk Stratification

医学 内科学 舒张期 心脏病学 射血分数 舒张功能 心力衰竭 舒张性心力衰竭 血压
作者
Chieh‐Ju Chao,Nahoko Kato,Christopher G. Scott,Francisco López-Jimenez,Grace Lin,Garvan C. Kane,Patricia A. Pellikka
出处
期刊:Journal of The American Society of Echocardiography [Elsevier]
卷期号:35 (12): 1214-1225.e8 被引量:22
标识
DOI:10.1016/j.echo.2022.06.013
摘要

The 2016 American Society of Echocardiography guidelines have been widely used to assess left ventricular diastolic function. However, limitations are present in the current classification system. The aim of this study was to develop a data-driven, unsupervised machine learning approach for diastolic function classification and risk stratification using the left ventricular diastolic function parameters recommended in the 2016 American Society of Echocardiography guidelines; the guideline grading was used as the reference standard.Baseline demographics, heart failure hospitalization, and all-cause mortality data were obtained for all adult patients who underwent transthoracic echocardiography at Mayo Clinic Rochester in 2015. Patients with prior mitral valve intervention, congenital heart disease, cardiac transplantation, or cardiac assist device implantation were excluded. Nine left ventricular diastolic function variables (mitral E- and A-wave peak velocities, E/A ratio, deceleration time, medial and lateral annular e' velocities and E/e' ratio, and tricuspid regurgitation peak velocity) were used for an unsupervised machine learning algorithm to identify different phenotype clusters. The cohort average of each variable was used for imputation. Patients were grouped according to the algorithm-determined clusters for Kaplan-Meier survival analysis.Among 24,414 patients (mean age, 63.6 ± 16.2 years), all-cause mortality occurred in 4,612 patients (18.9%) during a median follow-up period of 3.1 years. The algorithm determined three clusters with echocardiographic measurement characteristics corresponding to normal diastolic function (n = 8,312), impaired relaxation (n = 11,779), and increased filling pressure (n = 4,323), with 3-year cumulative mortality of 11.8%, 19.9%, and 33.4%, respectively (P < .0001). All 10,694 patients (43.8%) classified as indeterminate were reclassified into the three clusters (n = 3,324, n = 5,353, and n = 2,017, respectively), with 3-year mortality of 16.6%, 22.9%, and 34.4%, respectively. The clusters also outperformed guideline-based grade for prognostication (C index = 0.607 vs 0.582, P = .013).Unsupervised machine learning identified physiologically and prognostically distinct clusters on the basis of nine diastolic function Doppler variables. The clusters can be potentially applied in echocardiography laboratory practice and future clinical trials for simple, replicable diastolic function-related risk stratification.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ChristineShao发布了新的文献求助30
1秒前
科研通AI2S应助wan1223采纳,获得10
2秒前
yvonne发布了新的文献求助10
2秒前
4秒前
Pride完成签到 ,获得积分10
4秒前
领导范儿应助yet采纳,获得10
5秒前
zyy完成签到,获得积分10
5秒前
小二郎应助大力戎采纳,获得40
5秒前
丘比特应助jingyu采纳,获得50
5秒前
机智秋莲发布了新的文献求助10
5秒前
7秒前
雪无痕3074完成签到,获得积分10
7秒前
8秒前
彭于晏应助标致白卉采纳,获得10
8秒前
纯白完成签到,获得积分10
9秒前
酷波er应助archer01采纳,获得10
9秒前
无花果应助小萝卜采纳,获得10
9秒前
叭腐菌发布了新的文献求助10
9秒前
10秒前
小二郎应助晓晓来了采纳,获得10
10秒前
微笑的土豆完成签到,获得积分10
10秒前
10秒前
11秒前
Hello应助库里强采纳,获得10
11秒前
11秒前
苏苏阿苏发布了新的文献求助10
12秒前
Silence完成签到 ,获得积分10
12秒前
12秒前
XU完成签到,获得积分10
12秒前
花开发布了新的文献求助10
13秒前
怡然芒果发布了新的文献求助10
13秒前
小蘑菇应助momo采纳,获得10
13秒前
daladala完成签到 ,获得积分10
14秒前
15秒前
儿学化学打断腿完成签到,获得积分10
16秒前
xch发布了新的文献求助10
17秒前
能干的新筠完成签到,获得积分10
17秒前
lc发布了新的文献求助10
17秒前
小马甲应助DXY采纳,获得10
17秒前
19秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306986
求助须知:如何正确求助?哪些是违规求助? 2940825
关于积分的说明 8498822
捐赠科研通 2614965
什么是DOI,文献DOI怎么找? 1428599
科研通“疑难数据库(出版商)”最低求助积分说明 663451
邀请新用户注册赠送积分活动 648304