APASL‐ACLF Research Consortium–Artificial Intelligence (AARC‐AI) model precisely predicts outcomes in acute‐on‐chronic liver failure patients

医学 肌酐 曲线下面积 接收机工作特性 败血症 内科学
作者
Nipun Verma,Ashok Choudhury,Virendra Singh,Ajay Duseja,Manum Al‐Mahtab,Harshad Devarbhavi,C. E. Eapen,Ashish Goel,Qin Ning,Zhongping Duan,Saeed Hamid,Wasim Jafri,Amna S. Butt,Akash Shukla,Soek‐Siam Tan,Dong Joon Kim,Jinhua Hu,Ajit Sood,Omesh Goel,Vandana Midha
出处
期刊:Liver International [Wiley]
卷期号:43 (2): 442-451 被引量:10
标识
DOI:10.1111/liv.15361
摘要

We hypothesized that artificial intelligence (AI) models are more precise than standard models for predicting outcomes in acute-on-chronic liver failure (ACLF).We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p < .001) and 12.8% and 10.6% higher than the day 7 MELD for 30-day predictions in validation set (p < .001). The XGB model had the highest AUC for 7- and 90-day predictions as well (p < .001). Day-7 creatinine, international normalized ratio (INR), circulatory failure, leucocyte count and day-4 sepsis were top features determining the 30-day outcomes. A simple decision tree incorporating creatinine, INR and circulatory failure was able to classify patients into high (~90%), intermediate (~60%) and low risk (~20%) of mortality. A web-based AARC-AI model was developed and validated twice with optimal performance for 30-day predictions.The performance of the AARC-AI model exceeds the standard models for outcome predictions in ACLF. An AI-based decision tree can reliably undertake severity-based stratification of patients for timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
小鸟发布了新的文献求助10
刚刚
勤劳的凝海完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
柒号完成签到,获得积分10
2秒前
2秒前
汉堡包应助自由的小鸟采纳,获得10
2秒前
3秒前
冬冬林完成签到,获得积分10
3秒前
Pikno123完成签到,获得积分10
3秒前
3秒前
情怀应助Leeyee采纳,获得10
3秒前
平常的班完成签到,获得积分10
3秒前
lv发布了新的文献求助10
3秒前
4秒前
Alex发布了新的文献求助10
4秒前
dani_tian完成签到,获得积分10
4秒前
吹吹发布了新的文献求助10
4秒前
shao应助lalala采纳,获得10
4秒前
5秒前
5秒前
学术乌贼完成签到,获得积分10
5秒前
继往开来应助等等采纳,获得20
5秒前
乐观的含蕾完成签到,获得积分10
6秒前
眼睛大眼睛完成签到,获得积分10
6秒前
Lily发布了新的文献求助10
6秒前
情怀应助开朗网络采纳,获得10
7秒前
认真谷雪完成签到,获得积分10
7秒前
7秒前
曹晓龙发布了新的文献求助10
7秒前
FAN发布了新的文献求助10
7秒前
7秒前
汉堡包应助钱超采纳,获得10
8秒前
8秒前
9秒前
源源元发布了新的文献求助10
10秒前
yznfly应助洛苏采纳,获得30
10秒前
局内人发布了新的文献求助10
10秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952008
求助须知:如何正确求助?哪些是违规求助? 3497414
关于积分的说明 11087298
捐赠科研通 3228031
什么是DOI,文献DOI怎么找? 1784626
邀请新用户注册赠送积分活动 868824
科研通“疑难数据库(出版商)”最低求助积分说明 801198