清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

APASL‐ACLF Research Consortium–Artificial Intelligence (AARC‐AI) model precisely predicts outcomes in acute‐on‐chronic liver failure patients

医学 肌酐 曲线下面积 接收机工作特性 败血症 内科学
作者
Nipun Verma,Ashok Choudhury,Virendra Singh,Ajay Duseja,Manum Al‐Mahtab,Harshad Devarbhavi,C. E. Eapen,Ashish Goel,Qin Ning,Zhongping Duan,Saeed Hamid,Wasim Jafri,Amna S. Butt,Akash Shukla,Soek‐Siam Tan,Dong Joon Kim,Jinhua Hu,Ajit Sood,Omesh Goel,Vandana Midha
出处
期刊:Liver International [Wiley]
卷期号:43 (2): 442-451 被引量:12
标识
DOI:10.1111/liv.15361
摘要

We hypothesized that artificial intelligence (AI) models are more precise than standard models for predicting outcomes in acute-on-chronic liver failure (ACLF).We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p < .001) and 12.8% and 10.6% higher than the day 7 MELD for 30-day predictions in validation set (p < .001). The XGB model had the highest AUC for 7- and 90-day predictions as well (p < .001). Day-7 creatinine, international normalized ratio (INR), circulatory failure, leucocyte count and day-4 sepsis were top features determining the 30-day outcomes. A simple decision tree incorporating creatinine, INR and circulatory failure was able to classify patients into high (~90%), intermediate (~60%) and low risk (~20%) of mortality. A web-based AARC-AI model was developed and validated twice with optimal performance for 30-day predictions.The performance of the AARC-AI model exceeds the standard models for outcome predictions in ACLF. An AI-based decision tree can reliably undertake severity-based stratification of patients for timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
耍酷寻双完成签到 ,获得积分10
1秒前
善良的蛋挞完成签到,获得积分10
2秒前
FFFFFF完成签到 ,获得积分10
4秒前
Moonchild完成签到 ,获得积分10
5秒前
陈M雯完成签到 ,获得积分10
7秒前
11秒前
枯叶蝶完成签到 ,获得积分10
17秒前
上官若男应助洋洋采纳,获得10
20秒前
Judy完成签到 ,获得积分0
21秒前
鱼儿游完成签到 ,获得积分10
22秒前
迷你的夜天完成签到 ,获得积分10
23秒前
感性的俊驰完成签到 ,获得积分10
28秒前
wr781586完成签到 ,获得积分10
28秒前
eyu完成签到,获得积分10
30秒前
airtermis完成签到 ,获得积分10
33秒前
eeeeeeenzyme完成签到 ,获得积分10
37秒前
39秒前
缥缈的闭月完成签到,获得积分10
40秒前
量子星尘发布了新的文献求助10
41秒前
xiaosui完成签到 ,获得积分10
41秒前
mumu发布了新的文献求助10
43秒前
洋洋完成签到,获得积分10
51秒前
166完成签到 ,获得积分10
55秒前
tianshanfeihe完成签到 ,获得积分10
1分钟前
hcsdgf完成签到 ,获得积分10
1分钟前
qiqiqiqiqi完成签到 ,获得积分10
1分钟前
烟花应助风中的棒棒糖采纳,获得10
1分钟前
光亮白羊完成签到 ,获得积分10
1分钟前
chenmeimei2012完成签到 ,获得积分10
1分钟前
YZ完成签到 ,获得积分10
1分钟前
嗯嗯嗯哦哦哦完成签到 ,获得积分10
1分钟前
knight7m完成签到 ,获得积分10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
yunt完成签到 ,获得积分10
1分钟前
slayers完成签到 ,获得积分10
1分钟前
小洪俊熙完成签到,获得积分10
1分钟前
HY完成签到 ,获得积分10
2分钟前
2分钟前
PrayOne完成签到 ,获得积分10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4612892
求助须知:如何正确求助?哪些是违规求助? 4017940
关于积分的说明 12436878
捐赠科研通 3700243
什么是DOI,文献DOI怎么找? 2040634
邀请新用户注册赠送积分活动 1073400
科研通“疑难数据库(出版商)”最低求助积分说明 957029