亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

APASL‐ACLF Research Consortium–Artificial Intelligence (AARC‐AI) model precisely predicts outcomes in acute‐on‐chronic liver failure patients

医学 肌酐 曲线下面积 接收机工作特性 败血症 内科学
作者
Nipun Verma,Ashok Choudhury,Virendra Singh,Ajay Duseja,Manum Al‐Mahtab,Harshad Devarbhavi,C. E. Eapen,Ashish Goel,Qin Ning,Zhongping Duan,Saeed Hamid,Wasim Jafri,Amna S. Butt,Akash Shukla,Soek‐Siam Tan,Dong Joon Kim,Jinhua Hu,Ajit Sood,Omesh Goel,Vandana Midha
出处
期刊:Liver International [Wiley]
卷期号:43 (2): 442-451 被引量:10
标识
DOI:10.1111/liv.15361
摘要

We hypothesized that artificial intelligence (AI) models are more precise than standard models for predicting outcomes in acute-on-chronic liver failure (ACLF).We recruited ACLF patients between 2009 and 2020 from APASL-ACLF Research Consortium (AARC). Their clinical data, investigations and organ involvement were serially noted for 90-days and utilized for AI modelling. Data were split randomly into train and validation sets. Multiple AI models, MELD and AARC-Model, were created/optimized on train set. Outcome prediction abilities were evaluated on validation sets through area under the curve (AUC), accuracy, sensitivity, specificity and class precision.Among 2481 ACLF patients, 1501 in train set and 980 in validation set, the extreme gradient boost-cross-validated model (XGB-CV) demonstrated the highest AUC in train (0.999), validation (0.907) and overall sets (0.976) for predicting 30-day outcomes. The AUC and accuracy of the XGB-CV model (%Δ) were 7.0% and 6.9% higher than the standard day-7 AARC model (p < .001) and 12.8% and 10.6% higher than the day 7 MELD for 30-day predictions in validation set (p < .001). The XGB model had the highest AUC for 7- and 90-day predictions as well (p < .001). Day-7 creatinine, international normalized ratio (INR), circulatory failure, leucocyte count and day-4 sepsis were top features determining the 30-day outcomes. A simple decision tree incorporating creatinine, INR and circulatory failure was able to classify patients into high (~90%), intermediate (~60%) and low risk (~20%) of mortality. A web-based AARC-AI model was developed and validated twice with optimal performance for 30-day predictions.The performance of the AARC-AI model exceeds the standard models for outcome predictions in ACLF. An AI-based decision tree can reliably undertake severity-based stratification of patients for timely interventions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
深情安青应助lalalatiancai采纳,获得10
1秒前
王蒙完成签到,获得积分10
1秒前
7秒前
Watsun发布了新的文献求助30
13秒前
淡淡菠萝完成签到 ,获得积分10
14秒前
落后的怀柔完成签到,获得积分10
15秒前
15秒前
17秒前
18秒前
我是老大应助TiancHUA采纳,获得10
18秒前
wangxiaoyu完成签到,获得积分10
19秒前
独特的念柏完成签到,获得积分10
20秒前
21秒前
wangxiaoyu发布了新的文献求助10
22秒前
23秒前
23秒前
Zed发布了新的文献求助10
27秒前
lalalatiancai发布了新的文献求助10
28秒前
研水柔完成签到,获得积分10
28秒前
34秒前
所所应助weiquanfei采纳,获得10
35秒前
shouyu29应助wangxiaoyu采纳,获得10
38秒前
wuzhe03完成签到,获得积分10
38秒前
40秒前
44秒前
joanna完成签到,获得积分10
45秒前
lyz666发布了新的文献求助10
45秒前
大模型应助小房子采纳,获得10
47秒前
小底发布了新的文献求助10
48秒前
48秒前
了凡完成签到 ,获得积分10
59秒前
Zed发布了新的文献求助10
1分钟前
Iridesent0v0完成签到 ,获得积分10
1分钟前
1分钟前
张亚博完成签到 ,获得积分10
1分钟前
orixero应助科研通管家采纳,获得10
1分钟前
仰山雪发布了新的文献求助10
1分钟前
1分钟前
Qiuyajing完成签到,获得积分10
1分钟前
1分钟前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526498
求助须知:如何正确求助?哪些是违规求助? 3106931
关于积分的说明 9281903
捐赠科研通 2804438
什么是DOI,文献DOI怎么找? 1539468
邀请新用户注册赠送积分活动 716571
科研通“疑难数据库(出版商)”最低求助积分说明 709554