Application Status of Artificial Neural Network Technology in Clinical Pharmacy

人工神经网络 领域(数学) 药店 人工智能 计算机科学 机器学习 数据科学 医学 数学 纯数学 家庭医学
作者
Yan Li,T. Ma,Yan Wang
出处
期刊:Lecture notes on data engineering and communications technologies 卷期号:: 822-828 被引量:1
标识
DOI:10.1007/978-3-031-05484-6_107
摘要

With the development of society and the progress of science and technology, human beings pay more and more attention to life and health issues, and the safety of medication is no exception. Clinical medicine is a basic subject in the medical field. At the same time, in order to better meet clinical needs, artificial neural network technology is also attracting attention in the medical field. Artificial neural network is a product of highly integrated and intelligent information in the new era. It is the most widely used in many fields and has great potential, especially in the biological field. In recent years, neural networks have been widely used in the field of pharmacy, providing effective data methods for clinical pharmacy data analysis, model construction, and real-time control. This article uses experimental analysis and data analysis to better understand the predictive performance of artificial neural network technology in drug analysis, so as to explore its application in clinical pharmacy. According to the experimental results, the correlation coefficients of the experimental samples calculated by the artificial neural network are higher than those obtained by the binary regression, and the prediction results of the drug analysis by the artificial neural network are significantly better than the results of the binary regression.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
权翼完成签到,获得积分10
刚刚
田様应助sharp采纳,获得10
1秒前
谢丹完成签到 ,获得积分10
1秒前
kkk发布了新的文献求助10
1秒前
1秒前
草莓发布了新的文献求助10
1秒前
1秒前
2秒前
搞怪藏今完成签到 ,获得积分10
2秒前
苹果初阳完成签到,获得积分10
2秒前
3秒前
3秒前
乐乐应助大力的安阳采纳,获得30
4秒前
悦耳冰萍完成签到,获得积分10
4秒前
生动不平发布了新的文献求助10
4秒前
4秒前
LittleWang完成签到,获得积分10
4秒前
biowming完成签到,获得积分10
5秒前
5秒前
MgZn发布了新的文献求助10
6秒前
Mingyue123完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
6秒前
6秒前
碧蓝之柔完成签到,获得积分10
7秒前
方方土应助简简子采纳,获得80
7秒前
狗狗发布了新的文献求助200
7秒前
8秒前
8秒前
9秒前
9秒前
LLL发布了新的文献求助10
9秒前
9秒前
派3发布了新的文献求助10
10秒前
10秒前
朱良宇发布了新的文献求助10
10秒前
11秒前
睡觉专业户关注了科研通微信公众号
11秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5619979
求助须知:如何正确求助?哪些是违规求助? 4704479
关于积分的说明 14928024
捐赠科研通 4760640
什么是DOI,文献DOI怎么找? 2550712
邀请新用户注册赠送积分活动 1513458
关于科研通互助平台的介绍 1474498