亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

CORR Insights®: Machine-learning Models Predict 30-day Mortality, Cardiovascular Complications, and Respiratory Complications After Aseptic Revision Total Joint Arthroplasty

医学 关节置换术 骨科手术 关节置换术 外科 预测建模 机器学习 重症监护医学 计算机科学
作者
Amit Meena
出处
期刊:Clinical Orthopaedics and Related Research [Lippincott Williams & Wilkins]
卷期号:480 (11): 2146-2147
标识
DOI:10.1097/corr.0000000000002325
摘要

Where Are We Now? Aseptic revision arthroplasties carry more postoperative morbidity and mortality than primary joint arthroplasties do, particularly in the short term, and recent studies have shown a high degree of dissatisfaction and functional limitations among patients undergoing revision arthroplasty [2, 8]. Risk stratification is important before revision arthroplasty, even more so than in primary joint arthroplasty. Machine-learning and artificial intelligence (AI) programs have emerged in the past decade; AI tools use mathematical predictive models that run substantial amounts of data through defined algorithms. When these tools are designed to modify predictions in light of processed data, what results is called machine learning. Proofs of concept have included a model that predicted the risk of and time to TKA [5] and models that determine the risk of 30-day complications and mortality after primary THA and TKA using preoperative clinical and biochemical parameters [3, 4, 7], among others. The current study in Clinical Orthopaedics and Related Research® by Abraham et al. [1] expands on this concept by predicting 30-day postoperative morbidity and mortality in patients undergoing aseptic revision THA and TKA. Previous studies used machine learning to assess factors that predict 30-day mortality and morbidity after primary THA and TKA based on medical comorbidities and laboratory parameters. The present study is one of the first I know of to use this model in revision joint arthroplasty. The open-source XGBoost tool used in the present study was temporally validated and will be helpful for surgeons to preoperatively plan and stratify risk for patients undergoing aseptic revision arthroplasty of the knee and hip. The present study demonstrates the utility of AI-integrated machine learning and sets a precedent for its use in joint arthroplasty specifically and in major surgery more broadly. And, most importantly, this study—which provides a freely available online risk calculator that allows users to input patient data and easily calculate the postoperative risk of 30-day mortality and cardiac and respiratory complications after aseptic revision TKA or THA (http://nb-group.org/rev2/)—will help surgeons educate patients about their specific risk of adverse outcomes and guide appropriate preoperative medical management. Where Do We Need To Go? The use of AI and machine learning in surgical risk stratification seems like the next logical step in applying this technology in the field of surgery. Surgical risk stratification depends on various demographic factors including age, BMI, pre-existing medical comorbidities, and biochemical markers of the patient’s physiologic state [6]. Hence, intrinsically, risk stratification is a function of multiple variables, some of which are dynamic, thus making this type of multivariable analysis especially suitable for computation using AI-integrated machine-learning programs. The use of arthroplasty registries has become common in orthopaedic surgery in many countries. These are rich repositories of patient demographic data. However, medical comorbidity quantifiers, the most widely used of which is the American Society of Anesthesiologists physical score, have not been routinely recorded in many of these major registries. Indeed, the registries have only started to include these data recently. The maintenance of a database that integrates variables that have implications on patient risk and outcomes will be vital going forward in terms of formulating accurate risk stratification and predictive models. In the present study [1], the XGBoost tool was used to create a scoring tool for 30-day adverse outcomes. This tool is freely available and very accessible. Computation of multiple variables and the ability to discriminate between patients with the outcome of interest and those without it is a marked strength of this tool. If the current pattern of technological improvements is any indication, tools similar to the XGBoost will only continue to get better through more iterations. This should allow clinicians and researchers alike access to predictive models of risk stratification that incorporate a greater number of variables into a more-nuanced analysis. In the present study [1], using the XGBoost tool, the training dataset used data from 2014 to 2018, and the validation dataset used data from 2019. A post hoc analysis showed that the use of 2020 data did not improve the calibration of the 2019 validation dataset. By design, machine-learning programs tend to become more predictive with a greater amount of data available for computation. The inclusion of data from more years should improve calibration and the predictive model overall. How Do We Get There? I suggest a two-pronged approach. First, the model in this study that used XGBoost, as well as other similar tools using AI and machine-learning algorithms, needs to be more widely applied to ensure they generalize well across diverse study populations. Applying these tools to multiple arthroplasty registries will corroborate the utility of these machine-learning algorithms across populations. In countries where arthroplasty registries are unavailable, the repeatability of the present study’s results should be externally validated using large-scale hospital-based studies, which can be done retrospectively using available data. Of course, these studies need to carefully consider confounding factors. I suggest regression modeling for this purpose because this will allow us to mitigate confounding and identify the most relevant variables for clinical prediction. However, because not all registries collect the same data, the availability of all data needed for such an analysis poses a potential problem. This brings me to the second prong of the approach: By conducting studies and identifying the variables that are most predictive in risk stratification, patient-related variables can be identified. This can then provide a platform on which useful recommendations can be made regarding patient variables that will be included in the joint registry databases as standard practice. By integrating relevant predictive information in the registries, risk stratification using machine-learning algorithms can be more universally and uniformly applied. I think a happy middle ground will be to suggest that all registries collect the same variables to ensure uniform reporting among studies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
量子星尘发布了新的文献求助200
25秒前
Everything完成签到,获得积分10
32秒前
像个间谍发布了新的文献求助10
55秒前
57秒前
清风明月完成签到 ,获得积分10
1分钟前
比比谁的速度快应助Zephyr采纳,获得200
1分钟前
yx_cheng应助科研通管家采纳,获得10
1分钟前
1分钟前
跳跃毒娘发布了新的文献求助10
1分钟前
充电宝应助风中的飞机采纳,获得10
1分钟前
尘远知山静完成签到 ,获得积分10
2分钟前
haprier完成签到 ,获得积分10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lxh发布了新的文献求助10
2分钟前
李健应助lxh采纳,获得10
2分钟前
2分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
杨柳发布了新的文献求助10
3分钟前
yx_cheng应助科研通管家采纳,获得10
3分钟前
桦奕兮完成签到 ,获得积分10
3分钟前
像个间谍完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
思源应助杨柳采纳,获得10
4分钟前
Alger发布了新的文献求助10
4分钟前
4分钟前
量子星尘发布了新的文献求助10
4分钟前
ZYN完成签到 ,获得积分10
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
laity完成签到 ,获得积分10
6分钟前
Eileen发布了新的文献求助20
6分钟前
无花果应助猕猴桃采纳,获得30
6分钟前
善学以致用应助Eileen采纳,获得10
6分钟前
Alger发布了新的文献求助10
6分钟前
量子星尘发布了新的文献求助10
6分钟前
6分钟前
比比谁的速度快给Zephyr的求助进行了留言
7分钟前
7分钟前
高分求助中
【提示信息,请勿应助】关于scihub 10000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 2390
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4008151
求助须知:如何正确求助?哪些是违规求助? 3547956
关于积分的说明 11298612
捐赠科研通 3282865
什么是DOI,文献DOI怎么找? 1810219
邀请新用户注册赠送积分活动 885957
科研通“疑难数据库(出版商)”最低求助积分说明 811188