亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

MOF-Derived Fe-Zn-N-C Catalysts for Precious Metal Free Cathodes Showing High Performance in Anion-Exchange Membrane Fuel Cells

质子交换膜燃料电池 催化作用 阴极 阳极 化学工程 材料科学 燃料电池 碱性燃料电池 无机化学 氢氧化物 直接乙醇燃料电池 离子交换 化学 离子 电极 冶金 有机化学 物理化学 工程类
作者
Patrick Elsaesser,Philipp Veh,Severin Vierrath,Matthias Breitwieser,Anna Fischer
出处
期刊:Meeting abstracts 卷期号:MA2022-01 (35): 1482-1482
标识
DOI:10.1149/ma2022-01351482mtgabs
摘要

Hydrogen technologies such as low-temperature fuel cells are, besides batteries, the most promising technologies for mobility and transport applications. Currently, Proton Exchange Membrane Fuel Cells (PEMFCs) are, in terms of low-temperature fuel cells, the state-of-the-art technology achieving high power densities and reasonable stabilities. With the recent development and increasing availability of stable and performant hydroxide conductive ionomers, Anion Exchange Membrane Fuel Cells (AEMFCs) have gained increasing interest in recent years as they combine the advantages of PEMFCs, like low-temperature operation and high-power density with the low component costs of alkaline fuel cells. 1,2 Especially the possibility of replacing the expensive Pt-based electrocatalysts used in PEMFCs with cheaper electrocatalysts like nickel-based materials for the anode and iron-based materials for the cathode could significantly decrease the fuel cell costs. 1,3,4 Although the oxygen reduction reaction (ORR) at the cathode is favored in alkaline media compared to acidic media, the ORR is still a challenging reaction in AEMFCs. 5,6 Over the last decades, various materials were investigated in order to replace the expensive Pt electrocatalysts at the cathode. Among these materials, iron- and nitrogen-doped carbons (Fe-N-C) with molecular iron sites (Fe-N x ) show comparable catalytic activities to Pt and decent stabilities. 7–9 Fe-N-C catalysts can be obtained by co-pyrolysis of Fe- N-, and C-sources and subsequential acid leaching. One way to achieve Fe-N-C catalysts with high dispersion of Fe-N x sites is by using Fe-doped metal-organic frameworks (Fe-MOFs) as precursors. These combine the presence of pre-coordinated Fe-N x motives as well as high porosity and high specific surface area. 10 To produce Fe-N-C catalysts, we synthesized Fe-, and Zn-doped MOFs (Fe-Zn-MOF) as multicomponent Fe-, Zn-, N-, and C-precursors and pyrolyzed them in the presence of additional nitrogen sources at high temperatures. The resulting Fe-Zn-N-C catalysts revealed high dispersion of Fe and Zn, high specific surface areas (400-600 m 2 /g), and high porosity as revealed by XRD, EDX, HAADF STEM, and N 2 physisorption. Depending on the pre-treatment of the Fe-Zn-MOF, the Fe content of the resulting Fe-N-C catalyst could be varied. Benefiting from the high Fe-dispersion and the high specific surface areas, the best performing Fe-Zn-N-C catalyst with high Fe content shows high activity towards the ORR in alkaline media (0.1 mol/L KOH) as demonstrated by RDE measurements featuring a high half-wave potential (0.87 V vs. RHE) and high mass activity (47 mA/mg cat ) and thereby outperforming a commercial 50 wt.% Pt/C catalyst in terms of half-wave potential (0.83 V vs. RHE). To investigate the performance of the Fe-Zn-N-C catalysts in AEMFCs, membrane electrode assemblies (MEAs) were prepared with the synthesized Fe-Zn-N-C catalysts at the cathode, a commercial PtRu/C catalyst (40 wt.% Pt, 20 wt.% Ru on carbon black, AlfaAesar) at the anode, and a commercial ionomer as membrane and catalyst layer ionomer. The AEMFC with the best performing Fe-Zn-N-C catalyst revealed a high peak power density of 850 mW/cm², which is among the highest reported peak power densities for non-precious metal cathode catalysts in combination with a commercially available anion exchange ionomer. 1 D. R. Dekel, J. Power Sources , 2018, 375 , 158–169. 2 R. O’Hayre, S.-W. Cha, W. Colella and F. B. Prinz, Fuel Cell Fundamentals , John Wiley & Sons, Inc, Hoboken, NJ, USA, 2016. 3 X. Ge, A. Sumboja, D. Wuu, T. An, B. Li, F. W. T. Goh, T. S. A. Hor, Y. Zong and Z. Liu, ACS Catal. , 2015, 5 , 4643–4667. 4 E. S. Davydova, S. Mukerjee, F. Jaouen and D. R. Dekel, ACS Catal. , 2018, 8 , 6665–6690. 5 M. Hren, M. Božič, D. Fakin, K. S. Kleinschek and S. Gorgieva, Sustain. Energy Fuels , 2021, 5 , 604–637. 6 N. Ramaswamy and S. Mukerjee, Adv. Phys. Chem. , 2012, 2012 , 1–17. 7 X. Ren, B. Liu, X. Liang, Y. Wang, Q. Lv and A. Liu, J. Electrochem. Soc. , 2021, 168 , 044521. 8 L. Osmieri, L. Pezzolato and S. Specchia, Curr. Opin. Electrochem. , 2018, 9 , 240–256. 9 M. M. Hossen, K. Artyushkova, P. Atanassov and A. Serov, J. Power Sources , 2018, 375 , 214–221. 10 C. Li, D. H. Zhao, H. L. Long and M. Li, Rare Met. , 2021, 40 , 2657–2689.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小脚丫完成签到 ,获得积分10
20秒前
烟花应助繁荣的土豆采纳,获得10
20秒前
tarako发布了新的文献求助30
24秒前
子平完成签到 ,获得积分10
24秒前
31秒前
43秒前
46秒前
Lucas应助爱听歌笑寒采纳,获得10
49秒前
49秒前
jyy发布了新的文献求助10
50秒前
53秒前
58秒前
ldysaber完成签到,获得积分0
1分钟前
1分钟前
繁荣的土豆完成签到,获得积分20
1分钟前
1分钟前
劳健龙完成签到 ,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
十七应助cxy采纳,获得10
3分钟前
CodeCraft应助爱听歌笑寒采纳,获得10
3分钟前
3分钟前
4分钟前
NexusExplorer应助xx采纳,获得10
4分钟前
4分钟前
4分钟前
4分钟前
xx发布了新的文献求助10
4分钟前
tarako发布了新的文献求助10
4分钟前
科研通AI2S应助tarako采纳,获得10
5分钟前
5分钟前
Peri发布了新的文献求助10
5分钟前
5分钟前
ZXD1989完成签到 ,获得积分10
5分钟前
李剑鸿发布了新的文献求助200
5分钟前
乖拉发布了新的文献求助20
6分钟前
zsmj23完成签到 ,获得积分0
6分钟前
6分钟前
Lvk发布了新的文献求助10
6分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3393035
求助须知:如何正确求助?哪些是违规求助? 3003391
关于积分的说明 8809133
捐赠科研通 2690184
什么是DOI,文献DOI怎么找? 1473496
科研通“疑难数据库(出版商)”最低求助积分说明 681603
邀请新用户注册赠送积分活动 674534