表皮生长因子受体
癌症研究
表皮生长因子受体抑制剂
表皮生长因子
靶向治疗
化学
吉非替尼
酪氨酸激酶
癌症
体内
信号转导
受体
医学
生物
生物化学
内科学
生物技术
作者
Hailing Tang,Pan Yonghong,Zhang Yu-feng,Tang Hai-tao
标识
DOI:10.1016/j.jconrel.2022.07.018
摘要
Abnormal regulation of cell signaling pathways on cell survival, proliferation and migration contributes to the development of malignant tumors. Among them, epidermal growth factor receptor (EGFR) is one of the most important biomarkers in many types of malignant solid tumors. Its over-expression and mutation status can be served as a biomarker to identify patients who can be benifit from EGFR tyrosine kinase inhibitors and anti-EGFR monocloncal antibody (mAb) therapy. For decades, researches on EGFR targeted ligands were actively carried out to identify potent candidates for cancer therapy. An ideal EGFR ligand can competitively inhibit the binding of endogenous growth factor, such as epidermal growth factor (EGF) and transforming growth factor-α(TGF-α) to EGFR, thus block EGFR signaling pathway and downregulate EGFR expression. Alternatively, conjugation of EGFR ligands on drug delivery systems (DDS) can facilitate targeting delivery of therapeutics or diagnostic agents to EGFR over-expression tumors via EGFR-mediated endocytosis. GE11 peptide is one of the potent EGFR ligand screened from a phage display peptide library. It is a dodecapeptide that can specifically binds to EGFR with high affinity and selectivity. GE11 has been widely used in the diagnosis and targeted delivery of drugs for radiotherapy, genetherapy and chemotherpy against EGFR positive tumors. In this review, the critical factors affecting the in vivo and in vitro targeting performance of GE11 peptide, including ligand-receptor intermolecular force, linker bond properties and physiochemical properties of carrier materials, are detailedly interpreted. This review provides a valuable vision for the rational design and optimization of GE11-based active targeting strategies for cancer treatment, and it will promote the translation studies of GE11 from lab research to clinical application.
科研通智能强力驱动
Strongly Powered by AbleSci AI