Open-set gas recognition: A case-study based on an electronic nose dataset

电子鼻 人工智能 Softmax函数 模式识别(心理学) 计算机科学 卷积神经网络 试验装置 特征(语言学) 集合(抽象数据类型) 样品(材料) 感知器 人工神经网络 聚类分析 机器学习 数据挖掘 哲学 化学 色谱法 程序设计语言 语言学
作者
Cheng Qu,Chuanjun Liu,Yun Gu,Shuiqin Chai,Changhao Feng,Bin Chen
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:360: 131652-131652 被引量:4
标识
DOI:10.1016/j.snb.2022.131652
摘要

Electronic nose (E-Nose) has been widely used in detection and classification of gases. The learning models of traditional E-Noses are generally limited in closed-set environment: the training and test samples share the same label spaces. However, a more challenging and realistic scenario of E-Noses is open-set learning, where the test samples contains classes unseen during the model training. This study investigated the possibility of open-set learning models for the recognition and classification of gases based on a public electronic nose datasets. The dataset includes the response of a 72-channels MOS sensor array on 10 gaseous substances. The original data was preprocessed by two methods: one is to manually extract features from the response curve of each sample, and the other is to down-sample the original sample into a matrix. Then multilayer perceptron (MLP) and convolution neural network (CNN) were used to extract the feature vectors of the data processed by the two processing methods respectively. The performance of four different open-set recognition models, including softmax threshold (ST), OpenMax, extreme value machine (EVM) and class anchor clustering (CAC), was compared based on the feature vectors obtained from two neural networks. To understand the effect of sensor drift on the models, we also validated the models on a commonly used sensor drift dataset. The results demonstrated that for the open-set detection task, the CNN-based CAC (CAC-CNN) outperformed the other methods. For the closed-set recognition task, the CNN-based classification model achieved higher accuracy. On sensor drift dataset, the performance of open-set recognition models has decreased a lot, and it seems that drift has a large negative impact on the open-set gas recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
让我乔乔发布了新的文献求助10
2秒前
ygr应助科研通管家采纳,获得50
3秒前
不配.应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
wanci应助犹豫山河采纳,获得10
3秒前
Jasper应助科研通管家采纳,获得50
3秒前
橙子味的邱憨憨完成签到 ,获得积分10
5秒前
lolo发布了新的文献求助10
8秒前
congcong完成签到 ,获得积分10
9秒前
11秒前
yujianjin完成签到,获得积分10
12秒前
jiandan关注了科研通微信公众号
13秒前
15秒前
犹豫山河发布了新的文献求助10
16秒前
清爽的天晴完成签到,获得积分10
16秒前
好了完成签到 ,获得积分20
17秒前
陶醉的翠霜完成签到 ,获得积分10
18秒前
西西完成签到,获得积分10
18秒前
完美世界应助Rainbow采纳,获得10
18秒前
18秒前
meetrain发布了新的文献求助10
18秒前
烟花应助emergency采纳,获得10
18秒前
20秒前
秋秋完成签到,获得积分10
20秒前
21秒前
10711发布了新的文献求助10
23秒前
Lucas应助犹豫山河采纳,获得10
24秒前
坚定的海露完成签到,获得积分10
24秒前
一条咸鱼发布了新的文献求助10
25秒前
beluga发布了新的文献求助10
25秒前
26秒前
朱文琛完成签到,获得积分10
26秒前
无花果应助十二月的尾巴采纳,获得10
26秒前
26秒前
共享精神应助nano采纳,获得10
27秒前
30秒前
一条咸鱼完成签到,获得积分10
30秒前
Rainbow发布了新的文献求助10
30秒前
竹筏过海应助HopeStar采纳,获得30
30秒前
思源应助让我乔乔采纳,获得10
31秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3151938
求助须知:如何正确求助?哪些是违规求助? 2803228
关于积分的说明 7852661
捐赠科研通 2460630
什么是DOI,文献DOI怎么找? 1309955
科研通“疑难数据库(出版商)”最低求助积分说明 629087
版权声明 601760