Open-set gas recognition: A case-study based on an electronic nose dataset

电子鼻 人工智能 Softmax函数 模式识别(心理学) 计算机科学 卷积神经网络 试验装置 特征(语言学) 集合(抽象数据类型) 样品(材料) 感知器 人工神经网络 聚类分析 机器学习 数据挖掘 哲学 化学 色谱法 程序设计语言 语言学
作者
Cheng Qu,Chuanjun Liu,Yun Gu,Shuiqin Chai,Changhao Feng,Bin Chen
出处
期刊:Sensors and Actuators B-chemical [Elsevier]
卷期号:360: 131652-131652 被引量:4
标识
DOI:10.1016/j.snb.2022.131652
摘要

Electronic nose (E-Nose) has been widely used in detection and classification of gases. The learning models of traditional E-Noses are generally limited in closed-set environment: the training and test samples share the same label spaces. However, a more challenging and realistic scenario of E-Noses is open-set learning, where the test samples contains classes unseen during the model training. This study investigated the possibility of open-set learning models for the recognition and classification of gases based on a public electronic nose datasets. The dataset includes the response of a 72-channels MOS sensor array on 10 gaseous substances. The original data was preprocessed by two methods: one is to manually extract features from the response curve of each sample, and the other is to down-sample the original sample into a matrix. Then multilayer perceptron (MLP) and convolution neural network (CNN) were used to extract the feature vectors of the data processed by the two processing methods respectively. The performance of four different open-set recognition models, including softmax threshold (ST), OpenMax, extreme value machine (EVM) and class anchor clustering (CAC), was compared based on the feature vectors obtained from two neural networks. To understand the effect of sensor drift on the models, we also validated the models on a commonly used sensor drift dataset. The results demonstrated that for the open-set detection task, the CNN-based CAC (CAC-CNN) outperformed the other methods. For the closed-set recognition task, the CNN-based classification model achieved higher accuracy. On sensor drift dataset, the performance of open-set recognition models has decreased a lot, and it seems that drift has a large negative impact on the open-set gas recognition.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
舒服的冬天完成签到,获得积分10
刚刚
Helical给Helical的求助进行了留言
刚刚
甜蜜晓绿完成签到,获得积分10
刚刚
1秒前
钱多多完成签到,获得积分10
1秒前
baekhyun完成签到,获得积分20
1秒前
1秒前
dpp发布了新的文献求助10
1秒前
今今完成签到,获得积分10
1秒前
2秒前
2秒前
2秒前
3秒前
打打应助无情的白桃采纳,获得10
3秒前
香蕉觅云应助与光同晨采纳,获得10
4秒前
4秒前
小蘑菇应助clm采纳,获得10
4秒前
yhnsag完成签到,获得积分10
4秒前
Lin完成签到,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
Rain发布了新的文献求助10
6秒前
butiflow完成签到,获得积分10
6秒前
6秒前
6秒前
7秒前
务实的唇膏完成签到,获得积分10
7秒前
Will完成签到,获得积分10
7秒前
7秒前
Micky完成签到,获得积分10
7秒前
ape发布了新的文献求助10
7秒前
十七发布了新的文献求助10
8秒前
gyt发布了新的文献求助10
8秒前
时尚战斗机完成签到,获得积分10
8秒前
8秒前
华安发布了新的文献求助30
9秒前
9秒前
迟大猫应助dpp采纳,获得10
9秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762