催化作用
法拉第效率
氨生产
电化学
串联
氨
无机化学
化学
产量(工程)
铜
拉曼光谱
材料科学
化学工程
电极
物理化学
复合材料
有机化学
工程类
物理
光学
冶金
生物化学
作者
Wenhui He,Jian Zhang,Stefan Dieckhöfer,Swapnil Varhade,Ann Cathrin Brix,Anna Lielpētere,Sabine Seisel,João R. C. Junqueira,Wolfgang Schuhmann
标识
DOI:10.1038/s41467-022-28728-4
摘要
Electrocatalytic recycling of waste nitrate (NO3-) to valuable ammonia (NH3) at ambient conditions is a green and appealing alternative to the Haber-Bosch process. However, the reaction requires multi-step electron and proton transfer, making it a grand challenge to drive high-rate NH3 synthesis in an energy-efficient way. Herein, we present a design concept of tandem catalysts, which involves coupling intermediate phases of different transition metals, existing at low applied overpotentials, as cooperative active sites that enable cascade NO3--to-NH3 conversion, in turn avoiding the generally encountered scaling relations. We implement the concept by electrochemical transformation of Cu-Co binary sulfides into potential-dependent core-shell Cu/CuOx and Co/CoO phases. Electrochemical evaluation, kinetic studies, and in-situ Raman spectra reveal that the inner Cu/CuOx phases preferentially catalyze NO3- reduction to NO2-, which is rapidly reduced to NH3 at the nearby Co/CoO shell. This unique tandem catalyst system leads to a NO3--to-NH3 Faradaic efficiency of 93.3 ± 2.1% in a wide range of NO3- concentrations at pH 13, a high NH3 yield rate of 1.17 mmol cm-2 h-1 in 0.1 M NO3- at -0.175 V vs. RHE, and a half-cell energy efficiency of ~36%, surpassing most previous reports.
科研通智能强力驱动
Strongly Powered by AbleSci AI