计算机科学
相似性(几何)
核(代数)
嵌入
疾病
人工智能
机器学习
数据挖掘
计算生物学
生物信息学
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2022-01-01
卷期号:: 1-1
标识
DOI:10.1109/jbhi.2022.3152619
摘要
Long non-coding RNA (lncRNA) participates in various biological processes, hence its mutations and disorders play an important role in the pathogenesis of multiple human diseases. Identifying disease-related lncRNAs is crucial for the diagnosis, prevention, and treatment of diseases. Although a large number of computational approaches have been developed, effectively integrating multi-omics data and accurately predicting potential lncRNA-disease associations remains a challenge, especially regarding new lncRNAs and new diseases. In this work, we propose a new method with deep multi-network embedding, called DeepMNE, to discover potential lncRNA disease associations, especially for novel diseases and lncRNAs. DeepMNE extracts multi-omics data to describe diseases and lncRNAs, and proposes a network fusion method based on deep learning to integrate multi-source information. Moreover, DeepMNE complements the sparse association network and uses kernel neighborhood similarity to construct disease similarity and lncRNA similarity networks. Furthermore, A graph embedding method is adopted to predict potential associations. Experimental results demonstrate that compared to other state-of-the-art methods, DeepMNE has a higher predictive performance on new associations, new lncRNAs and new diseases. Besides, DeepMNE also elicits a considerable predictive performance on perturbed datasets. Additionally, the results of two different types of case studies indicate that DeepMNE can be used as an effective tool for disease-related lncRNA prediction. The code of DeepMNE is freely available at https://github.com/Mayingjun20179/ DeepMNE.
科研通智能强力驱动
Strongly Powered by AbleSci AI