亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Dairy cow lameness detection using a back curvature feature

跛足 人工智能 奶牛 曲率 特征提取 数学 计算机科学 模式识别(心理学) 医学 动物科学 生物 外科 几何学
作者
Bo Jiang,Huaibo Song,Han Wang,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106729-106729 被引量:5
标识
DOI:10.1016/j.compag.2022.106729
摘要

Manual detection of lameness poses several problems, such as difficulty in finding sudden, severe or early lameness behavior. A dairy cow’s lameness is closely related to curvature of the cow’s back. Focusing on the curvature features of dairy cows’ backs, this study proposes a lameness detection method that combines machine vision technology with a deep learning algorithm. Firstly, the FLYOLOv3 algorithm was used to construct a Cow’s Back Position Extraction (CBPE) model to realize the extraction of the dairy cow’s back position coordinates. Simultaneously, a First to Last Frame Image Difference (FLFID) algorithm was used to construct a Cow’s Object Region Extraction (CORE) model to separate the dairy cow from the image background and obtain the pixel region of the dairy cow. Then, a Cow’s Back Curvature Extraction (CBCE) model was used to extract the dairy cow’s back curvature data from the acquired dairy cow’s back position and pixel region of the dairy cow. Finally, a Noise+ Bilateral Long Short-term Memory (BiLSTM) model was used to predict the curvature data and match the curvature features of the dairy cow’s lameness, so as to classify and detect dairy cow lameness. To verify the effectiveness of the algorithm, 567 videos were used to train the network model in a Long Short-term Memory (LSTM) model, a BiLSTM model, Noise+LSTM model, and the model proposed in this paper, respectively, and 243 videos were used for verification and testing. According to the fitting curvature data of the dairy cows’ back obtained by the algorithm used in this paper, it was found that the average classification accuracy of the model proposed in this research was 8.04%, 2.09%, and 5.78% higher than the average classification accuracy of the LSTM, BiLSTM, Noise+LSTM models, respectively. In the parallel experiment that classified the detection of dairy cow lameness, the average classification accuracy of the model proposed in this paper was 96.61%. The above results show that the lameness of dairy cows can be correctly detected through analysis of the curvature features of dairy cows' backs. The proposed method is a novel, deep learning-based method for dairy cow lameness early detection which may have significant economic impact on the dairy industry, and the proposed method provides an innovative means for detecting dairy cow lameness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
7秒前
朱志伟发布了新的文献求助10
12秒前
19秒前
21秒前
虚拟的凡波完成签到,获得积分10
23秒前
酷波er应助大半个菜鸟采纳,获得10
23秒前
27秒前
fabius0351完成签到 ,获得积分10
30秒前
哎亚发布了新的文献求助10
31秒前
早上坏完成签到,获得积分10
33秒前
默默善愁完成签到,获得积分10
35秒前
36秒前
科研通AI6应助科研通管家采纳,获得10
36秒前
打打应助科研通管家采纳,获得10
36秒前
JamesPei应助科研通管家采纳,获得10
37秒前
慕青应助科研通管家采纳,获得10
37秒前
田様应助科研通管家采纳,获得10
37秒前
深情安青应助草莓丢了霉采纳,获得10
42秒前
46秒前
Stella应助虚拟的凡波采纳,获得10
47秒前
William_l_c完成签到,获得积分10
50秒前
52秒前
54秒前
zozox完成签到 ,获得积分10
54秒前
Cmqq发布了新的文献求助10
55秒前
56秒前
孤央完成签到 ,获得积分10
56秒前
朱志伟完成签到,获得积分10
56秒前
jimforu完成签到 ,获得积分10
58秒前
58秒前
1分钟前
852应助Cmqq采纳,获得10
1分钟前
alsen发布了新的文献求助10
1分钟前
1分钟前
1分钟前
1分钟前
潮鸣完成签到 ,获得积分10
1分钟前
默默善愁发布了新的文献求助10
1分钟前
慕青应助凶狠的秀发采纳,获得10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599726
求助须知:如何正确求助?哪些是违规求助? 4685467
关于积分的说明 14838489
捐赠科研通 4670150
什么是DOI,文献DOI怎么找? 2538175
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898