Dairy cow lameness detection using a back curvature feature

跛足 人工智能 奶牛 曲率 特征提取 数学 计算机科学 模式识别(心理学) 医学 动物科学 生物 外科 几何学
作者
Bo Jiang,Huaibo Song,Han Wang,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106729-106729 被引量:5
标识
DOI:10.1016/j.compag.2022.106729
摘要

Manual detection of lameness poses several problems, such as difficulty in finding sudden, severe or early lameness behavior. A dairy cow’s lameness is closely related to curvature of the cow’s back. Focusing on the curvature features of dairy cows’ backs, this study proposes a lameness detection method that combines machine vision technology with a deep learning algorithm. Firstly, the FLYOLOv3 algorithm was used to construct a Cow’s Back Position Extraction (CBPE) model to realize the extraction of the dairy cow’s back position coordinates. Simultaneously, a First to Last Frame Image Difference (FLFID) algorithm was used to construct a Cow’s Object Region Extraction (CORE) model to separate the dairy cow from the image background and obtain the pixel region of the dairy cow. Then, a Cow’s Back Curvature Extraction (CBCE) model was used to extract the dairy cow’s back curvature data from the acquired dairy cow’s back position and pixel region of the dairy cow. Finally, a Noise+ Bilateral Long Short-term Memory (BiLSTM) model was used to predict the curvature data and match the curvature features of the dairy cow’s lameness, so as to classify and detect dairy cow lameness. To verify the effectiveness of the algorithm, 567 videos were used to train the network model in a Long Short-term Memory (LSTM) model, a BiLSTM model, Noise+LSTM model, and the model proposed in this paper, respectively, and 243 videos were used for verification and testing. According to the fitting curvature data of the dairy cows’ back obtained by the algorithm used in this paper, it was found that the average classification accuracy of the model proposed in this research was 8.04%, 2.09%, and 5.78% higher than the average classification accuracy of the LSTM, BiLSTM, Noise+LSTM models, respectively. In the parallel experiment that classified the detection of dairy cow lameness, the average classification accuracy of the model proposed in this paper was 96.61%. The above results show that the lameness of dairy cows can be correctly detected through analysis of the curvature features of dairy cows' backs. The proposed method is a novel, deep learning-based method for dairy cow lameness early detection which may have significant economic impact on the dairy industry, and the proposed method provides an innovative means for detecting dairy cow lameness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
橙子完成签到,获得积分10
刚刚
于瑜与余完成签到 ,获得积分10
1秒前
听雨眠完成签到 ,获得积分10
2秒前
852应助xxy采纳,获得10
2秒前
2秒前
美梦成真福禄寿完成签到 ,获得积分10
3秒前
万能图书馆应助幻心采纳,获得10
3秒前
叶子完成签到 ,获得积分10
3秒前
共享精神应助naturehome采纳,获得10
3秒前
称心乐枫完成签到,获得积分10
4秒前
研友_84mPRL发布了新的文献求助10
4秒前
辛勤安梦完成签到,获得积分10
4秒前
健忘惜海完成签到,获得积分10
4秒前
4秒前
JIN发布了新的文献求助10
4秒前
4秒前
atonnng发布了新的文献求助30
4秒前
kk99123应助毕业即胜利采纳,获得10
5秒前
wlscj应助jjj采纳,获得20
5秒前
淡定草丛完成签到 ,获得积分10
5秒前
ccc完成签到 ,获得积分10
5秒前
繁荣的安双完成签到,获得积分10
6秒前
6秒前
小唐完成签到,获得积分10
6秒前
snowpie完成签到 ,获得积分10
6秒前
Tim完成签到,获得积分10
7秒前
8秒前
tanx发布了新的文献求助10
8秒前
SciGPT应助海洋球采纳,获得10
8秒前
邱晓文完成签到 ,获得积分20
8秒前
8秒前
9秒前
LYH发布了新的文献求助10
9秒前
灿烂千阳完成签到,获得积分10
9秒前
快乐的素完成签到 ,获得积分10
9秒前
10秒前
viviji完成签到,获得积分10
10秒前
健壮道天应助bule采纳,获得10
10秒前
10秒前
真实的一鸣完成签到,获得积分10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Complete Pro-Guide to the All-New Affinity Studio: The A-to-Z Master Manual: Master Vector, Pixel, & Layout Design: Advanced Techniques for Photo, Designer, and Publisher in the Unified Suite 1000
The International Law of the Sea (fourth edition) 800
Teacher Wellbeing: A Real Conversation for Teachers and Leaders 600
Synthesis and properties of compounds of the type A (III) B2 (VI) X4 (VI), A (III) B4 (V) X7 (VI), and A3 (III) B4 (V) X9 (VI) 500
Microbially Influenced Corrosion of Materials 500
Die Fliegen der Palaearktischen Region. Familie 64 g: Larvaevorinae (Tachininae). 1975 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5402410
求助须知:如何正确求助?哪些是违规求助? 4521021
关于积分的说明 14083516
捐赠科研通 4435060
什么是DOI,文献DOI怎么找? 2434548
邀请新用户注册赠送积分活动 1426679
关于科研通互助平台的介绍 1405439