清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Dairy cow lameness detection using a back curvature feature

跛足 人工智能 奶牛 曲率 特征提取 数学 计算机科学 模式识别(心理学) 医学 动物科学 生物 外科 几何学
作者
Bo Jiang,Huaibo Song,Han Wang,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:194: 106729-106729 被引量:5
标识
DOI:10.1016/j.compag.2022.106729
摘要

Manual detection of lameness poses several problems, such as difficulty in finding sudden, severe or early lameness behavior. A dairy cow’s lameness is closely related to curvature of the cow’s back. Focusing on the curvature features of dairy cows’ backs, this study proposes a lameness detection method that combines machine vision technology with a deep learning algorithm. Firstly, the FLYOLOv3 algorithm was used to construct a Cow’s Back Position Extraction (CBPE) model to realize the extraction of the dairy cow’s back position coordinates. Simultaneously, a First to Last Frame Image Difference (FLFID) algorithm was used to construct a Cow’s Object Region Extraction (CORE) model to separate the dairy cow from the image background and obtain the pixel region of the dairy cow. Then, a Cow’s Back Curvature Extraction (CBCE) model was used to extract the dairy cow’s back curvature data from the acquired dairy cow’s back position and pixel region of the dairy cow. Finally, a Noise+ Bilateral Long Short-term Memory (BiLSTM) model was used to predict the curvature data and match the curvature features of the dairy cow’s lameness, so as to classify and detect dairy cow lameness. To verify the effectiveness of the algorithm, 567 videos were used to train the network model in a Long Short-term Memory (LSTM) model, a BiLSTM model, Noise+LSTM model, and the model proposed in this paper, respectively, and 243 videos were used for verification and testing. According to the fitting curvature data of the dairy cows’ back obtained by the algorithm used in this paper, it was found that the average classification accuracy of the model proposed in this research was 8.04%, 2.09%, and 5.78% higher than the average classification accuracy of the LSTM, BiLSTM, Noise+LSTM models, respectively. In the parallel experiment that classified the detection of dairy cow lameness, the average classification accuracy of the model proposed in this paper was 96.61%. The above results show that the lameness of dairy cows can be correctly detected through analysis of the curvature features of dairy cows' backs. The proposed method is a novel, deep learning-based method for dairy cow lameness early detection which may have significant economic impact on the dairy industry, and the proposed method provides an innovative means for detecting dairy cow lameness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghe完成签到,获得积分10
3秒前
炳灿完成签到 ,获得积分10
10秒前
16秒前
hxd_BIGpaperer完成签到,获得积分10
22秒前
小鱼女侠完成签到 ,获得积分10
23秒前
卜哥完成签到 ,获得积分10
26秒前
yangjinru完成签到 ,获得积分10
42秒前
甜美的吹完成签到 ,获得积分10
59秒前
1分钟前
Kevin Li完成签到,获得积分10
1分钟前
gengsumin完成签到,获得积分10
1分钟前
llll完成签到 ,获得积分10
1分钟前
wang完成签到,获得积分10
1分钟前
1分钟前
小文殊完成签到 ,获得积分10
1分钟前
1分钟前
LiugQin完成签到,获得积分10
1分钟前
千空完成签到 ,获得积分10
2分钟前
无一完成签到 ,获得积分0
2分钟前
Owen应助Guozixin采纳,获得10
2分钟前
11关闭了11文献求助
2分钟前
zm完成签到 ,获得积分10
2分钟前
l老王完成签到 ,获得积分0
2分钟前
zhilianghui0807完成签到 ,获得积分0
2分钟前
顾矜应助十分十分佳采纳,获得10
2分钟前
MISA完成签到 ,获得积分10
2分钟前
俊逸的香萱完成签到 ,获得积分10
2分钟前
11发布了新的文献求助30
3分钟前
3分钟前
迷人的沛山完成签到 ,获得积分10
3分钟前
3分钟前
简单完成签到 ,获得积分10
3分钟前
研友_LN25rL完成签到,获得积分10
3分钟前
勤恳的语蝶完成签到 ,获得积分10
4分钟前
顾矜应助我亦化身东海去采纳,获得10
4分钟前
枯叶蝶完成签到 ,获得积分10
4分钟前
笨蛋美女完成签到 ,获得积分10
4分钟前
拼搏书琴完成签到 ,获得积分10
4分钟前
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4926941
求助须知:如何正确求助?哪些是违规求助? 4196392
关于积分的说明 13032711
捐赠科研通 3968832
什么是DOI,文献DOI怎么找? 2175128
邀请新用户注册赠送积分活动 1192288
关于科研通互助平台的介绍 1102773