Dairy cow lameness detection using a back curvature feature

跛足 人工智能 奶牛 曲率 特征提取 数学 计算机科学 模式识别(心理学) 医学 动物科学 生物 外科 几何学
作者
Bo Jiang,Huaibo Song,Han Wang,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106729-106729 被引量:5
标识
DOI:10.1016/j.compag.2022.106729
摘要

Manual detection of lameness poses several problems, such as difficulty in finding sudden, severe or early lameness behavior. A dairy cow’s lameness is closely related to curvature of the cow’s back. Focusing on the curvature features of dairy cows’ backs, this study proposes a lameness detection method that combines machine vision technology with a deep learning algorithm. Firstly, the FLYOLOv3 algorithm was used to construct a Cow’s Back Position Extraction (CBPE) model to realize the extraction of the dairy cow’s back position coordinates. Simultaneously, a First to Last Frame Image Difference (FLFID) algorithm was used to construct a Cow’s Object Region Extraction (CORE) model to separate the dairy cow from the image background and obtain the pixel region of the dairy cow. Then, a Cow’s Back Curvature Extraction (CBCE) model was used to extract the dairy cow’s back curvature data from the acquired dairy cow’s back position and pixel region of the dairy cow. Finally, a Noise+ Bilateral Long Short-term Memory (BiLSTM) model was used to predict the curvature data and match the curvature features of the dairy cow’s lameness, so as to classify and detect dairy cow lameness. To verify the effectiveness of the algorithm, 567 videos were used to train the network model in a Long Short-term Memory (LSTM) model, a BiLSTM model, Noise+LSTM model, and the model proposed in this paper, respectively, and 243 videos were used for verification and testing. According to the fitting curvature data of the dairy cows’ back obtained by the algorithm used in this paper, it was found that the average classification accuracy of the model proposed in this research was 8.04%, 2.09%, and 5.78% higher than the average classification accuracy of the LSTM, BiLSTM, Noise+LSTM models, respectively. In the parallel experiment that classified the detection of dairy cow lameness, the average classification accuracy of the model proposed in this paper was 96.61%. The above results show that the lameness of dairy cows can be correctly detected through analysis of the curvature features of dairy cows' backs. The proposed method is a novel, deep learning-based method for dairy cow lameness early detection which may have significant economic impact on the dairy industry, and the proposed method provides an innovative means for detecting dairy cow lameness.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小野菌完成签到,获得积分10
刚刚
1秒前
栗子发布了新的文献求助30
1秒前
2秒前
WY完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
流浪给付研琪的求助进行了留言
2秒前
2秒前
学渣发布了新的文献求助10
2秒前
俊逸的问薇完成签到 ,获得积分10
3秒前
过时的访天完成签到 ,获得积分10
3秒前
柴郡喵完成签到,获得积分10
4秒前
4秒前
小圆不圆发布了新的文献求助10
4秒前
典雅的灵煌完成签到,获得积分10
4秒前
yyyg完成签到,获得积分10
6秒前
ZZZ完成签到,获得积分10
6秒前
雨雨雨发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
8秒前
8秒前
zhubin完成签到 ,获得积分10
8秒前
高高问夏发布了新的文献求助10
8秒前
笑点低蜜蜂完成签到,获得积分10
9秒前
香蕉觅云应助ProfWang采纳,获得10
9秒前
清爽老九发布了新的文献求助10
9秒前
如意发布了新的文献求助10
9秒前
所所应助神勇乐安采纳,获得10
9秒前
10秒前
yyyg发布了新的文献求助10
10秒前
10秒前
小二郎应助时刻保持质疑采纳,获得10
11秒前
i喝凉白开完成签到 ,获得积分10
11秒前
beiyue完成签到,获得积分10
11秒前
丘比特应助keyanrubbish采纳,获得10
11秒前
流浪应助付研琪采纳,获得10
12秒前
害羞鬼完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
人脑智能与人工智能 1000
花の香りの秘密―遺伝子情報から機能性まで 800
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5608504
求助须知:如何正确求助?哪些是违规求助? 4693127
关于积分的说明 14876947
捐赠科研通 4717761
什么是DOI,文献DOI怎么找? 2544250
邀请新用户注册赠送积分活动 1509316
关于科研通互助平台的介绍 1472836