Dairy cow lameness detection using a back curvature feature

跛足 人工智能 奶牛 曲率 特征提取 数学 计算机科学 模式识别(心理学) 医学 动物科学 生物 外科 几何学
作者
Bo Jiang,Huaibo Song,Han Wang,Changying Li
出处
期刊:Computers and Electronics in Agriculture [Elsevier]
卷期号:194: 106729-106729 被引量:5
标识
DOI:10.1016/j.compag.2022.106729
摘要

Manual detection of lameness poses several problems, such as difficulty in finding sudden, severe or early lameness behavior. A dairy cow’s lameness is closely related to curvature of the cow’s back. Focusing on the curvature features of dairy cows’ backs, this study proposes a lameness detection method that combines machine vision technology with a deep learning algorithm. Firstly, the FLYOLOv3 algorithm was used to construct a Cow’s Back Position Extraction (CBPE) model to realize the extraction of the dairy cow’s back position coordinates. Simultaneously, a First to Last Frame Image Difference (FLFID) algorithm was used to construct a Cow’s Object Region Extraction (CORE) model to separate the dairy cow from the image background and obtain the pixel region of the dairy cow. Then, a Cow’s Back Curvature Extraction (CBCE) model was used to extract the dairy cow’s back curvature data from the acquired dairy cow’s back position and pixel region of the dairy cow. Finally, a Noise+ Bilateral Long Short-term Memory (BiLSTM) model was used to predict the curvature data and match the curvature features of the dairy cow’s lameness, so as to classify and detect dairy cow lameness. To verify the effectiveness of the algorithm, 567 videos were used to train the network model in a Long Short-term Memory (LSTM) model, a BiLSTM model, Noise+LSTM model, and the model proposed in this paper, respectively, and 243 videos were used for verification and testing. According to the fitting curvature data of the dairy cows’ back obtained by the algorithm used in this paper, it was found that the average classification accuracy of the model proposed in this research was 8.04%, 2.09%, and 5.78% higher than the average classification accuracy of the LSTM, BiLSTM, Noise+LSTM models, respectively. In the parallel experiment that classified the detection of dairy cow lameness, the average classification accuracy of the model proposed in this paper was 96.61%. The above results show that the lameness of dairy cows can be correctly detected through analysis of the curvature features of dairy cows' backs. The proposed method is a novel, deep learning-based method for dairy cow lameness early detection which may have significant economic impact on the dairy industry, and the proposed method provides an innovative means for detecting dairy cow lameness.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
ff发布了新的文献求助10
2秒前
珍狗发布了新的文献求助10
3秒前
inghai发布了新的文献求助10
4秒前
五棵松恶霸完成签到 ,获得积分10
4秒前
搞怪哑铃发布了新的文献求助10
5秒前
随遇而安完成签到,获得积分10
5秒前
星辰大海应助化学兔八哥采纳,获得10
5秒前
8秒前
m(_._)m完成签到 ,获得积分0
9秒前
Bone完成签到,获得积分20
9秒前
杨莹完成签到 ,获得积分10
9秒前
科研小锄头完成签到,获得积分10
11秒前
啵清啵完成签到,获得积分10
16秒前
梁33完成签到,获得积分10
16秒前
18秒前
欢喜的代容完成签到,获得积分10
18秒前
HongqiZhang发布了新的文献求助10
21秒前
专注的小蕾关注了科研通微信公众号
23秒前
23秒前
23秒前
W29完成签到,获得积分10
24秒前
SHYSHYLONG完成签到,获得积分10
25秒前
Bone发布了新的文献求助10
25秒前
25秒前
myl发布了新的文献求助10
27秒前
SHYSHYLONG发布了新的文献求助10
28秒前
zxfaaaaa发布了新的文献求助10
33秒前
33秒前
我是老大应助天马行空采纳,获得10
33秒前
35秒前
珍狗完成签到,获得积分10
35秒前
大模型应助123采纳,获得10
36秒前
allrubbish完成签到,获得积分10
37秒前
37秒前
李喜喜发布了新的文献求助10
38秒前
xiaopingbing完成签到 ,获得积分10
38秒前
三年半完成签到,获得积分10
38秒前
小焦完成签到 ,获得积分10
39秒前
40秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3164260
求助须知:如何正确求助?哪些是违规求助? 2815000
关于积分的说明 7907415
捐赠科研通 2474608
什么是DOI,文献DOI怎么找? 1317598
科研通“疑难数据库(出版商)”最低求助积分说明 631857
版权声明 602228