石墨烯
材料科学
涂层
氧化物
表面改性
聚对苯二甲酸乙二醇酯
成核
纳米技术
化学工程
复合材料
抗菌活性
化学
有机化学
冶金
细菌
工程类
生物
遗传学
作者
Jinqing Hu,Yonghuan Zhao,Meng Yang,Juanjuan Su,Jian Han
出处
期刊:Synthetic Metals
[Elsevier BV]
日期:2022-05-01
卷期号:286: 117033-117033
被引量:12
标识
DOI:10.1016/j.synthmet.2022.117033
摘要
Coating is considered to be a convenient and effective method for functionalization of textiles. However, the non-uniform dispersion of the functional particles and their tendency to flake off from the fabric’s surface are not only detrimental to their functionality, but also cause problems of poor durability. In this study, graphene oxide (GO) and cuprous oxide (Cu2O), which have a synergistic antibacterial effect, are uniformly and firmly anchored to the surface of the polyethylene terephthalate (PET) fabric by means of the excellent adhesion of dopamine. The results show that GO provides a nucleation site for Cu2O while avoiding agglomeration, and is reduced to rGO during the reduction of Cu2O. The coated PET fabric exhibits strong antibacterial capabilities against S. aureus and E. coli, with antibacterial rates of more than 99.99% due to the synergistic action of rGO and Cu2O nanoparticles. Furthermore, the modified PET fabric offers superior washing resistance, with an antibacterial rate of 90% for S. aureus and 88% for E. coli after 40 washes. The resistivity of coated PET fabric is decreased to 7.16 × 108 Ω cm from 2.64 × 1015 Ω cm of pure PET fabric. In addition, the modification can substantially improve the UV protection factor (UPF) of the PET fabric from 45 to 460, far exceeding the excellent UPF rating (50). Overall, these findings could open a new pathway to develop versatile textiles for applications in various fields.
科研通智能强力驱动
Strongly Powered by AbleSci AI