Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
夏硕完成签到,获得积分10
刚刚
TYQ发布了新的文献求助10
刚刚
英姑应助卢琨采纳,获得10
1秒前
计飞完成签到,获得积分10
2秒前
2秒前
iamxx_完成签到,获得积分10
3秒前
3秒前
所所应助开心樱采纳,获得10
3秒前
赵健明发布了新的文献求助10
4秒前
圣斗士发布了新的文献求助10
4秒前
4秒前
Parrot_PAI完成签到,获得积分10
4秒前
白天发布了新的文献求助10
4秒前
5秒前
5秒前
小二郎应助忧郁的友琴采纳,获得10
5秒前
朱123发布了新的文献求助10
6秒前
xxxyt完成签到,获得积分20
7秒前
英吉利25发布了新的文献求助10
7秒前
7秒前
量子星尘发布了新的文献求助10
8秒前
yyyy完成签到,获得积分10
8秒前
Lyric完成签到,获得积分20
8秒前
8秒前
香蕉觅云应助科研通管家采纳,获得10
8秒前
Lucas应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
无心客应助科研通管家采纳,获得10
9秒前
9秒前
NexusExplorer应助科研通管家采纳,获得10
9秒前
潇潇发布了新的文献求助10
9秒前
JamesPei应助科研通管家采纳,获得10
9秒前
大壮发布了新的文献求助10
9秒前
汉堡包应助科研通管家采纳,获得10
9秒前
浮游应助科研通管家采纳,获得10
9秒前
深情安青应助科研通管家采纳,获得10
9秒前
无花果应助科研通管家采纳,获得10
9秒前
今后应助科研通管家采纳,获得10
9秒前
CipherSage应助科研通管家采纳,获得30
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 2000
List of 1,091 Public Pension Profiles by Region 1021
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5474258
求助须知:如何正确求助?哪些是违规求助? 4576037
关于积分的说明 14356246
捐赠科研通 4503903
什么是DOI,文献DOI怎么找? 2467852
邀请新用户注册赠送积分活动 1455603
关于科研通互助平台的介绍 1429618