Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
1秒前
3秒前
来日方长完成签到,获得积分10
4秒前
Sekiro完成签到,获得积分10
5秒前
可乐发布了新的文献求助10
5秒前
王加冕发布了新的文献求助10
7秒前
Sekiro发布了新的文献求助10
7秒前
爆米花应助动听向彤采纳,获得10
7秒前
9秒前
Orange应助虚心的爆米花采纳,获得30
9秒前
Charon发布了新的文献求助10
11秒前
chi发布了新的文献求助10
12秒前
善学以致用应助hhhhKwok采纳,获得10
14秒前
14秒前
18秒前
18秒前
19秒前
兮尔发布了新的文献求助10
20秒前
Lucas应助Charon采纳,获得10
20秒前
帅气的藏鸟完成签到,获得积分10
21秒前
芝士蛋糕完成签到 ,获得积分10
21秒前
狮子卷卷发布了新的文献求助30
22秒前
甘地发布了新的文献求助10
22秒前
英俊的铭应助渝州人采纳,获得10
23秒前
SMIRTGIRL发布了新的文献求助10
24秒前
25秒前
动听向彤发布了新的文献求助10
25秒前
科研小白完成签到,获得积分10
25秒前
26秒前
27秒前
哈喽发布了新的文献求助20
28秒前
兮尔完成签到,获得积分10
29秒前
29秒前
司空豁发布了新的文献求助10
30秒前
FashionBoy应助SMIRTGIRL采纳,获得10
30秒前
32秒前
34秒前
36秒前
烛畔旧盟完成签到,获得积分10
37秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 700
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
2-Acetyl-1-pyrroline: an important aroma component of cooked rice 500
The Paleoanthropology of Eastern Asia 500
Evolution 3rd edition 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3174377
求助须知:如何正确求助?哪些是违规求助? 2825591
关于积分的说明 7953276
捐赠科研通 2486537
什么是DOI,文献DOI怎么找? 1325288
科研通“疑难数据库(出版商)”最低求助积分说明 634432
版权声明 602734