Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
浮游应助哭泣代容采纳,获得10
1秒前
LBJ完成签到,获得积分10
1秒前
希希发布了新的文献求助10
2秒前
2秒前
Akim应助JAYZHANG采纳,获得10
3秒前
吴军霄完成签到,获得积分10
3秒前
3秒前
4秒前
完美世界应助黄钦清采纳,获得10
4秒前
bab发布了新的文献求助10
5秒前
tt发布了新的文献求助10
5秒前
潇洒发布了新的文献求助10
5秒前
量子星尘发布了新的文献求助10
6秒前
jingjing发布了新的文献求助10
6秒前
6秒前
风吹麦田应助Steven采纳,获得10
7秒前
打打应助橙子采纳,获得10
7秒前
小二郎应助弓夜声采纳,获得10
7秒前
呆萌的蚂蚁完成签到 ,获得积分10
8秒前
8秒前
9秒前
9秒前
9秒前
9秒前
9秒前
果粒橙发布了新的文献求助10
10秒前
10秒前
lx840518发布了新的文献求助20
11秒前
若离发布了新的文献求助10
11秒前
12秒前
wanci应助星落枝头采纳,获得10
12秒前
清123关注了科研通微信公众号
13秒前
小蘑菇应助LBH采纳,获得10
13秒前
tt完成签到,获得积分10
13秒前
搬砖feng发布了新的文献求助10
13秒前
小蘑菇应助DJ采纳,获得10
13秒前
小二郎应助jingjing采纳,获得10
14秒前
14秒前
14秒前
lucky发布了新的文献求助10
15秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Teaching Language in Context (Third Edition) 1000
Identifying dimensions of interest to support learning in disengaged students: the MINE project 1000
Introduction to Early Childhood Education 1000
List of 1,091 Public Pension Profiles by Region 921
Aerospace Standards Index - 2025 800
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5436097
求助须知:如何正确求助?哪些是违规求助? 4548199
关于积分的说明 14212530
捐赠科研通 4468375
什么是DOI,文献DOI怎么找? 2448993
邀请新用户注册赠送积分活动 1439942
关于科研通互助平台的介绍 1416594