已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
伊力扎提发布了新的文献求助10
2秒前
洁净的千凡完成签到 ,获得积分20
2秒前
小二郎应助lili采纳,获得10
3秒前
任无施发布了新的文献求助10
3秒前
5秒前
梦梦关注了科研通微信公众号
8秒前
小橘子吃傻子完成签到,获得积分10
9秒前
斯文败类应助liwen采纳,获得10
11秒前
12秒前
6666应助佛光辉采纳,获得10
12秒前
李健的小迷弟应助任无施采纳,获得10
14秒前
14秒前
桐桐应助海大彭于晏采纳,获得10
15秒前
少年锦时完成签到,获得积分10
15秒前
白泽发布了新的文献求助10
18秒前
18秒前
lili发布了新的文献求助10
19秒前
19秒前
EternalStrider完成签到,获得积分10
21秒前
梦梦发布了新的文献求助10
22秒前
cmf完成签到 ,获得积分10
26秒前
27秒前
Criminology34应助伊力扎提采纳,获得10
27秒前
29秒前
xiaoguoxiaoguo完成签到,获得积分10
31秒前
科研通AI6应助inRe采纳,获得30
31秒前
lululemontree发布了新的文献求助10
31秒前
33秒前
英姑应助开放的千青采纳,获得10
33秒前
白泽完成签到,获得积分10
38秒前
cenghao给cenghao的求助进行了留言
39秒前
40秒前
lili完成签到,获得积分10
42秒前
44秒前
qing_li完成签到,获得积分10
45秒前
45秒前
miaomiao123完成签到 ,获得积分10
46秒前
liwen发布了新的文献求助10
47秒前
勤劳凌青发布了新的文献求助20
47秒前
小蛇玩完成签到,获得积分10
47秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
花の香りの秘密―遺伝子情報から機能性まで 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
Digital and Social Media Marketing 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5627761
求助须知:如何正确求助?哪些是违规求助? 4714630
关于积分的说明 14963076
捐赠科研通 4785511
什么是DOI,文献DOI怎么找? 2555141
邀请新用户注册赠送积分活动 1516488
关于科研通互助平台的介绍 1476910