Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier BV]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
鹿lu应助dyfsj采纳,获得10
刚刚
李健的小迷弟应助Havean采纳,获得50
刚刚
上官若男应助虚拟的惜筠采纳,获得10
刚刚
XXXX发布了新的文献求助10
1秒前
1秒前
円桑发布了新的文献求助10
1秒前
1秒前
1秒前
1秒前
2秒前
4秒前
Crayon发布了新的文献求助10
4秒前
11完成签到,获得积分10
4秒前
李健应助乐乐采纳,获得10
5秒前
阮楷瑞发布了新的文献求助10
5秒前
yulee发布了新的文献求助10
6秒前
十一发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
巴爪鱼关注了科研通微信公众号
7秒前
7秒前
明理念桃发布了新的文献求助10
7秒前
田様应助鲤鱼安青采纳,获得10
7秒前
科研通AI2S应助为学日益采纳,获得10
8秒前
yydragen应助yangya采纳,获得30
8秒前
9秒前
莉莉发布了新的文献求助10
9秒前
9秒前
orixero应助Michelle米筛哦采纳,获得10
9秒前
AZE应助火山采纳,获得10
10秒前
小黑完成签到,获得积分10
10秒前
11秒前
CodeCraft应助円桑采纳,获得10
11秒前
CipherSage应助汤飞柏采纳,获得10
11秒前
11秒前
Owen应助1212采纳,获得10
11秒前
11秒前
11秒前
英俊的铭应助renj采纳,获得10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974602
求助须知:如何正确求助?哪些是违规求助? 3519026
关于积分的说明 11196787
捐赠科研通 3255127
什么是DOI,文献DOI怎么找? 1797693
邀请新用户注册赠送积分活动 877100
科研通“疑难数据库(出版商)”最低求助积分说明 806130