亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Multi-neural network based tiled 360°video caching with Mobile Edge Computing

计算机科学 视区 隐藏物 计算机网络 回程(电信) 边缘设备 卷积神经网络 蜂窝网络 体验质量 GSM演进的增强数据速率 实时计算
作者
Shashwat Kumar,Lalit Bhagat,A. Antony Franklin,Jiong Jin
出处
期刊:Journal of Network and Computer Applications [Elsevier]
卷期号:201: 103342-103342 被引量:5
标识
DOI:10.1016/j.jnca.2022.103342
摘要

It is challenging to stream 360° videos over the mobile network for its stringent latency and high bandwidth requirements. Although edge-based viewport adaptive tiled 360° video streaming solutions alleviate the bandwidth demand, the backhaul congestion and low latency concern remain persistent when data is served from the Content Delivery Network over the Internet. Edge caching can help mitigate these issues by storing the content at the edge of the cellular networks on the base station. However, caching 360° videos is challenging because of the large file size, which is further convoluted by tile selection in caching decisions. In this work, we propose a Mobile Edge Computing (MEC) based tiled 360° caching solution that uses Long–Short-Term-Memory (LSTM) and Convolutional Neural Network (CNN) in conjunction to address the challenges associated with 360° video caching. Specifically, the LSTM model predicts the future popularity of the videos, assisting in cache replacement decisions. For the selected videos, the CNN model, which is trained using the saliency map of the video, identifies the most engaging tiles in the videos for caching using the video content itself. The caching of tiles instead of the whole 360° videos improves the caching efficiency of the resource-constrained MEC server. The LSTM model is optimized based on the loss value of different hyperparameters, and AUROC (Ares Under ROC Curve) is used to evaluate the accuracy of the CNN model. Both the models produce highly accurate results. The results from extensive simulations show that the proposed solution significantly outperforms the existing methods. It improves the cache hit rate by at least 10% and reduces the backhaul usage by at least 35% with significant improvement in end-to-end latency, which is crucial for the quality of experience in 360° video streaming.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
李教授发布了新的文献求助10
1秒前
李教授完成签到,获得积分10
14秒前
小詹同学完成签到 ,获得积分10
17秒前
Ash完成签到,获得积分10
20秒前
疯狂的寻琴完成签到 ,获得积分10
20秒前
无花果应助十是十采纳,获得10
25秒前
YYL完成签到 ,获得积分10
26秒前
28秒前
可爱的函函应助林狗采纳,获得10
30秒前
科研通AI2S应助Zenia采纳,获得10
31秒前
大轩完成签到 ,获得积分10
31秒前
32秒前
懵懂的土豆完成签到 ,获得积分10
34秒前
50秒前
NI完成签到 ,获得积分10
52秒前
宋宋要成功完成签到 ,获得积分10
52秒前
Criminology34举报栗松琛求助涉嫌违规
53秒前
穆雨完成签到 ,获得积分10
55秒前
林狗发布了新的文献求助10
55秒前
Zenia发布了新的文献求助10
56秒前
1分钟前
科研通AI6应助满意的世界采纳,获得150
1分钟前
景严发布了新的文献求助10
1分钟前
认真的不斜完成签到 ,获得积分10
1分钟前
打打应助Cmqq采纳,获得10
1分钟前
muliushang完成签到 ,获得积分10
1分钟前
G1997完成签到 ,获得积分10
1分钟前
1分钟前
淡定太兰完成签到 ,获得积分10
1分钟前
1分钟前
深情安青应助微S采纳,获得10
1分钟前
Jasper应助科研通管家采纳,获得10
1分钟前
ceeray23应助科研通管家采纳,获得50
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
1分钟前
三木完成签到,获得积分10
1分钟前
微S发布了新的文献求助10
1分钟前
2分钟前
2分钟前
林狗发布了新的文献求助10
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599706
求助须知:如何正确求助?哪些是违规求助? 4685410
关于积分的说明 14838480
捐赠科研通 4670043
什么是DOI,文献DOI怎么找? 2538158
邀请新用户注册赠送积分活动 1505527
关于科研通互助平台的介绍 1470898