Cloud detection with boundary nets

边界(拓扑) 云计算 计算机科学 可扩展性 比例(比率) 人工智能 算法 数学 数据库 物理 数学分析 量子力学 操作系统
作者
Kang Wu,Zunxiao Xu,Xinrong Lyu,Peng Ren
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 218-231 被引量:27
标识
DOI:10.1016/j.isprsjprs.2022.02.010
摘要

In satellite optical images, clouds are normally exhibited at different scales with various boundaries. In order to accurately capture the variable visual forms of clouds, we present a deep learning based strategy, i.e., Boundary Nets, which generates a cloud mask for detecting clouds in one cloudy image. The Boundary Nets consist of two nets, i.e., (a) a scalable-boundary net, and (b) a differentiable-boundary net. The scalable-boundary net extracts multi-scale features from a cloudy image, and comprehensively characterizes clouds with variable boundary scales by a multi-scale fusion module. The multi-scale feature extraction and multi-scale fusion consistently capture clouds of different sizes, generating a multi-scale cloud mask for the cloudy image. The differentiable-boundary net characterizes the difference between the multi-scale cloud mask and the ground truth cloud mask by a residual architecture. It generates a difference cloud mask that is a complement of boundary details to the multi-scale cloud mask. Finally, the overall cloud mask is obtained by fusing the multi-scale cloud mask and the difference cloud mask. In the training process, multiple key parts of the Boundary Nets access supervision information in a distributed manner, and the losses are summed up for an overall training computation. Such distributed, overall supervision not only avoids training the two nets separately but also tightly couples the two nets into an overall framework. The experimental results validate that our Boundary Nets perform well and achieve outstanding results. The code for implementing the proposed boundary nets is available at https://gitee.com/kang_wu/boundary-nets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顾矜应助帅帅哈采纳,获得10
2秒前
呆萌妙松完成签到,获得积分10
3秒前
4秒前
4秒前
小于完成签到,获得积分20
5秒前
5秒前
5秒前
哈哈完成签到,获得积分10
5秒前
6秒前
小于发布了新的文献求助10
8秒前
9秒前
怡宝发布了新的文献求助10
10秒前
Ren完成签到,获得积分10
15秒前
kk119完成签到,获得积分10
18秒前
喜悦莛完成签到,获得积分10
18秒前
圆圆完成签到,获得积分10
22秒前
美美美美美栗林里莉完成签到,获得积分10
25秒前
研友_89eBO8完成签到 ,获得积分10
26秒前
双青豆完成签到,获得积分10
26秒前
29秒前
你里其完成签到,获得积分10
30秒前
30秒前
科研通AI2S应助shuoshuo采纳,获得10
32秒前
香蕉觅云应助聂难敌采纳,获得10
33秒前
阿诺发布了新的文献求助10
34秒前
34秒前
Dou完成签到,获得积分10
34秒前
毛豆应助Panhj采纳,获得10
37秒前
37秒前
彭于晏应助科研通管家采纳,获得10
38秒前
深情安青应助科研通管家采纳,获得10
38秒前
ppg123应助科研通管家采纳,获得10
38秒前
Orange应助科研通管家采纳,获得10
38秒前
乐乐应助科研通管家采纳,获得10
38秒前
情怀应助科研通管家采纳,获得10
38秒前
SciGPT应助科研通管家采纳,获得10
38秒前
38秒前
38秒前
38秒前
38秒前
高分求助中
Earth System Geophysics 1000
Co-opetition under Endogenous Bargaining Power 666
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3211800
求助须知:如何正确求助?哪些是违规求助? 2860692
关于积分的说明 8125303
捐赠科研通 2526490
什么是DOI,文献DOI怎么找? 1360389
科研通“疑难数据库(出版商)”最低求助积分说明 643200
邀请新用户注册赠送积分活动 615288