Cloud detection with boundary nets

边界(拓扑) 云计算 计算机科学 可扩展性 比例(比率) 人工智能 算法 数学 数据库 物理 数学分析 量子力学 操作系统
作者
Kang Wu,Zunxiao Xu,Xinrong Lyu,Peng Ren
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 218-231 被引量:27
标识
DOI:10.1016/j.isprsjprs.2022.02.010
摘要

In satellite optical images, clouds are normally exhibited at different scales with various boundaries. In order to accurately capture the variable visual forms of clouds, we present a deep learning based strategy, i.e., Boundary Nets, which generates a cloud mask for detecting clouds in one cloudy image. The Boundary Nets consist of two nets, i.e., (a) a scalable-boundary net, and (b) a differentiable-boundary net. The scalable-boundary net extracts multi-scale features from a cloudy image, and comprehensively characterizes clouds with variable boundary scales by a multi-scale fusion module. The multi-scale feature extraction and multi-scale fusion consistently capture clouds of different sizes, generating a multi-scale cloud mask for the cloudy image. The differentiable-boundary net characterizes the difference between the multi-scale cloud mask and the ground truth cloud mask by a residual architecture. It generates a difference cloud mask that is a complement of boundary details to the multi-scale cloud mask. Finally, the overall cloud mask is obtained by fusing the multi-scale cloud mask and the difference cloud mask. In the training process, multiple key parts of the Boundary Nets access supervision information in a distributed manner, and the losses are summed up for an overall training computation. Such distributed, overall supervision not only avoids training the two nets separately but also tightly couples the two nets into an overall framework. The experimental results validate that our Boundary Nets perform well and achieve outstanding results. The code for implementing the proposed boundary nets is available at https://gitee.com/kang_wu/boundary-nets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助张钦奎采纳,获得10
刚刚
3秒前
多晶1完成签到,获得积分10
3秒前
4秒前
xingxingxing发布了新的文献求助10
4秒前
5秒前
8秒前
SciGPT应助q792309106采纳,获得10
8秒前
9秒前
上官若男应助卖萌的秋田采纳,获得10
9秒前
袁超发布了新的文献求助30
10秒前
张雯思发布了新的文献求助10
10秒前
JJ发布了新的文献求助10
10秒前
旧梦完成签到 ,获得积分10
11秒前
tramp应助xiamu采纳,获得20
12秒前
xingxingxing完成签到,获得积分10
13秒前
甜甜的悲发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助10
13秒前
张钦奎发布了新的文献求助10
14秒前
14秒前
zhjg发布了新的文献求助10
15秒前
阿超完成签到,获得积分10
15秒前
FashionBoy应助凪凪采纳,获得10
17秒前
17秒前
wanci应助jinzhen采纳,获得10
18秒前
13发布了新的文献求助10
18秒前
小蘑菇应助甜甜的悲采纳,获得10
20秒前
GL发布了新的文献求助10
21秒前
袁超完成签到,获得积分10
21秒前
21秒前
忧郁盼夏发布了新的文献求助10
22秒前
22秒前
q792309106完成签到,获得积分10
23秒前
乖猫要努力应助郭小宝采纳,获得20
23秒前
q792309106发布了新的文献求助10
27秒前
27秒前
凪凪发布了新的文献求助10
27秒前
27秒前
情怀应助忧郁盼夏采纳,获得10
28秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3989334
求助须知:如何正确求助?哪些是违规求助? 3531428
关于积分的说明 11253936
捐赠科研通 3270119
什么是DOI,文献DOI怎么找? 1804887
邀请新用户注册赠送积分活动 882087
科研通“疑难数据库(出版商)”最低求助积分说明 809173