Cloud detection with boundary nets

边界(拓扑) 云计算 计算机科学 可扩展性 比例(比率) 人工智能 算法 数学 数据库 物理 数学分析 量子力学 操作系统
作者
Kang Wu,Zunxiao Xu,Xinrong Lyu,Peng Ren
出处
期刊:Isprs Journal of Photogrammetry and Remote Sensing 卷期号:186: 218-231 被引量:27
标识
DOI:10.1016/j.isprsjprs.2022.02.010
摘要

In satellite optical images, clouds are normally exhibited at different scales with various boundaries. In order to accurately capture the variable visual forms of clouds, we present a deep learning based strategy, i.e., Boundary Nets, which generates a cloud mask for detecting clouds in one cloudy image. The Boundary Nets consist of two nets, i.e., (a) a scalable-boundary net, and (b) a differentiable-boundary net. The scalable-boundary net extracts multi-scale features from a cloudy image, and comprehensively characterizes clouds with variable boundary scales by a multi-scale fusion module. The multi-scale feature extraction and multi-scale fusion consistently capture clouds of different sizes, generating a multi-scale cloud mask for the cloudy image. The differentiable-boundary net characterizes the difference between the multi-scale cloud mask and the ground truth cloud mask by a residual architecture. It generates a difference cloud mask that is a complement of boundary details to the multi-scale cloud mask. Finally, the overall cloud mask is obtained by fusing the multi-scale cloud mask and the difference cloud mask. In the training process, multiple key parts of the Boundary Nets access supervision information in a distributed manner, and the losses are summed up for an overall training computation. Such distributed, overall supervision not only avoids training the two nets separately but also tightly couples the two nets into an overall framework. The experimental results validate that our Boundary Nets perform well and achieve outstanding results. The code for implementing the proposed boundary nets is available at https://gitee.com/kang_wu/boundary-nets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
赘婿应助大力的含卉采纳,获得30
1秒前
Mumu完成签到,获得积分10
1秒前
1秒前
刘老师关注了科研通微信公众号
1秒前
小赞芽发布了新的文献求助10
1秒前
2秒前
2秒前
xiaowu完成签到,获得积分10
2秒前
织诗成锦完成签到,获得积分10
3秒前
科研通AI5应助文艺水蜜桃采纳,获得10
3秒前
3秒前
3秒前
科研通AI5应助BILNQPL采纳,获得10
4秒前
流白完成签到,获得积分10
4秒前
4秒前
Yolo完成签到,获得积分20
4秒前
YY应助胖豆采纳,获得10
5秒前
5秒前
jagger发布了新的文献求助10
5秒前
5秒前
6秒前
ChemistryZyh完成签到,获得积分10
6秒前
6秒前
6秒前
6秒前
充电宝应助朴素的士晋采纳,获得10
7秒前
7秒前
9秒前
调研昵称发布了新的文献求助10
9秒前
9秒前
9秒前
十万大山兵大大给十万大山兵大大的求助进行了留言
9秒前
9秒前
CodeCraft应助Mumu采纳,获得10
10秒前
飘逸数据线完成签到,获得积分10
10秒前
111发布了新的文献求助10
10秒前
Gauss完成签到,获得积分0
10秒前
丘奇完成签到,获得积分10
10秒前
木子发布了新的文献求助10
10秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527723
求助须知:如何正确求助?哪些是违规求助? 3107826
关于积分的说明 9286663
捐赠科研通 2805577
什么是DOI,文献DOI怎么找? 1539998
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709762