去模糊
图像复原
剪切波
全变差去噪
数学优化
正规化(语言学)
凸优化
极小极大
迭代重建
凸性
凸函数
计算机科学
正多边形
数学
图像处理
算法
人工智能
图像(数学)
经济
金融经济学
几何学
作者
Qiaohong Liu,Cunjue Liu,Ling Chen,Liping Sun,Song Gao,Min Lin
标识
DOI:10.1117/1.jei.31.1.013028
摘要
The total variation (TV) model preserves edges well but causes staircase effects and fails to protect textures. To avoid these limitations, an innovative hybrid regularization model that combines minmax-concave TV (and the shearlet sparsity is proposed for simultaneous image deblurring and image reconstruction. Although the proposed cost function is a non-convex L1-regularized optimization problem, it can maintain the convexity of the cost function by giving the proper nonconvexity parameter to minimize it. Then, an alternating iterative scheme using variable splitting and the alternating direction method of multipliers is introduced to optimize the proposed model. The extensive experiments demonstrate the efficiency and viability of the proposed method in terms of both subjective vision and objective measures.
科研通智能强力驱动
Strongly Powered by AbleSci AI