A comparative study on online machine learning techniques for network traffic streams analysis

计算机科学 数据流挖掘 分析 数据分析 流量分析 大数据 数据科学 数据挖掘 领域(数学分析) 过程(计算) 网络监控 计算机网络 数学 操作系统 数学分析
作者
Amin Shahraki,Mahmoud Abbasi,Amir Taherkordi,Anca Delia Jurcut
出处
期刊:Computer Networks [Elsevier]
卷期号:207: 108836-108836 被引量:51
标识
DOI:10.1016/j.comnet.2022.108836
摘要

Modern networks generate a massive amount of traffic data streams. Analyzing this data is essential for various purposes, such as network resources management and cyber-security analysis. There is an urgent need for data analytic methods that can perform network data processing in an online manner based on the arrival of new data. Online machine learning (OL) techniques promise to support such type of data analytics. In this paper, we investigate and compare the OL techniques that facilitate data stream analytics in the networking domain. We also investigate the importance of traffic data analytics and highlight the advantages of online learning in this regard, as well as the challenges associated with OL-based network traffic stream analysis, e.g., concept drift and the imbalanced classes. We review the data stream processing tools and frameworks that can be used to process such data online or on-the-fly along with their pros and cons, and their integrability with de facto data processing frameworks. To explore the performance of OL techniques, we conduct an empirical evaluation on the performance of different ensemble- and tree-based algorithms for network traffic classification. Finally, the open issues and the future directions in analyzing traffic data streams are presented. This technical study presents valuable insights and outlook for the network research community when dealing with the requirements and purposes of online data streams analytics and learning in the networking domain.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小晓完成签到,获得积分10
刚刚
刚刚
我是老大应助林林采纳,获得10
1秒前
1秒前
vivichan7完成签到,获得积分10
1秒前
酷波er应助ruochenzu采纳,获得10
1秒前
1秒前
善学以致用应助yyyyy采纳,获得10
2秒前
阿财完成签到,获得积分10
2秒前
科研通AI5应助yyyy采纳,获得10
2秒前
Owen应助cc采纳,获得10
2秒前
aldehyde应助洪伟采纳,获得10
3秒前
yyydd完成签到,获得积分20
3秒前
王大王发布了新的文献求助10
3秒前
4秒前
芙莉莲发布了新的文献求助10
4秒前
烟花应助sylvesteryin采纳,获得20
4秒前
4秒前
4秒前
大模型应助张清思采纳,获得10
4秒前
宋晓静发布了新的文献求助10
4秒前
5秒前
5秒前
1l2kl完成签到,获得积分10
5秒前
5秒前
mmw完成签到,获得积分10
5秒前
5秒前
6秒前
6秒前
UGO发布了新的文献求助10
6秒前
6秒前
搜集达人应助健壮的怜烟采纳,获得10
6秒前
科研通AI5应助WJ采纳,获得10
7秒前
情怀应助yun采纳,获得10
7秒前
美满又蓝发布了新的文献求助10
8秒前
8秒前
8秒前
MabelKKKK完成签到,获得积分10
8秒前
李佳洲完成签到,获得积分10
8秒前
今后应助majiko采纳,获得10
8秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Time Matters: On Theory and Method 500
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3558110
求助须知:如何正确求助?哪些是违规求助? 3133242
关于积分的说明 9401228
捐赠科研通 2833333
什么是DOI,文献DOI怎么找? 1557473
邀请新用户注册赠送积分活动 727263
科研通“疑难数据库(出版商)”最低求助积分说明 716273