All-organic polyimide/Cl-HBC composite film with high breakdown strength and ultra-low dielectric loss

电介质 材料科学 聚酰亚胺 复合数 介电强度 介电损耗 轨道能级差 复合材料 侧链 分子 有机化学 化学 光电子学 聚合物 图层(电子)
作者
Lingjie Zhang,Jian Liu,Longbo Luo,Xiangyang Liu,Xu Wang
出处
期刊:Polymer [Elsevier]
卷期号:245: 124702-124702 被引量:19
标识
DOI:10.1016/j.polymer.2022.124702
摘要

The combination of high breakdown strength and low dielectric loss has always been a challenge for the preparation of high energy storage density dielectric films. In this work, in order to optimize their dielectric performances, we develop a series of all-organic PI composite films by introducing perchlorinated hexa-peri-hexabenzocoronene (Cl-HBC) molecules with a concentration (0.01–0.1mol%) into PI film. Even at an ultra-low concentration, the Cl-HBC molecule with a quasi-two-dimensional structure would successfully induce the in-plane orientation of PI macromolecular chains and reduce their orientation confusion and molecular cavity. Thus, the existence of Cl-HBC obviously limits the chain mobility of PI in PI-Cl-HBC film under the electric field, which is supposed to reduce the dielectric loss of resulted films. Moreover, Cl-HBC molecules are equipped with a low Lowest Unoccupied Molecular Orbital (LUMO) of about −3.52eV and could work as an electron trap and block the conduction of electrons in the PI composite film. Here, the breakdown strength of the composite film was improved from 442 kV/mm (pure PI) to 539 kV/mm and the dielectric loss was reduced to 0.002. To our best knowledge, it is the first time to significantly enhance the dielectric strength and largely reduce its dielectric loss simultaneously by preparing PI composite film. Meanwhile, compared with pure PI, the energy storage density of composite film increases by 43% and 96% at room temperature and 150 °C, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
情怀应助王叮叮采纳,获得10
刚刚
1秒前
1秒前
LMH完成签到 ,获得积分10
2秒前
Coral369发布了新的文献求助10
4秒前
5秒前
FF完成签到 ,获得积分10
5秒前
YUZUKAREI完成签到,获得积分20
6秒前
6秒前
隐形的巴豆完成签到,获得积分10
6秒前
chiyudoubao发布了新的文献求助10
6秒前
7秒前
大个应助娃娃菜妮采纳,获得10
7秒前
小草莓发布了新的文献求助10
9秒前
9秒前
李爱国应助Zzz采纳,获得10
10秒前
英俊松鼠发布了新的文献求助10
10秒前
11秒前
11秒前
淡淡的小懒虫应助果ghj采纳,获得10
13秒前
13秒前
轻松念蕾发布了新的文献求助10
13秒前
在水一方应助NORMCORE采纳,获得10
14秒前
zhanks发布了新的文献求助10
14秒前
科研小白发布了新的文献求助10
15秒前
老中医EaSy发布了新的文献求助10
15秒前
15秒前
yy完成签到,获得积分10
16秒前
17秒前
科研小白完成签到 ,获得积分10
17秒前
17秒前
18秒前
kyut发布了新的文献求助10
18秒前
zhanks完成签到,获得积分20
19秒前
yao发布了新的文献求助10
21秒前
22秒前
23秒前
Samuel发布了新的文献求助10
24秒前
24秒前
星辰大海应助Phoo采纳,获得10
25秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459237
求助须知:如何正确求助?哪些是违规求助? 3053759
关于积分的说明 9038343
捐赠科研通 2743031
什么是DOI,文献DOI怎么找? 1504647
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694664