Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis

接收机工作特性 人工智能 深度学习 荟萃分析 机器学习 肝细胞癌 医学 计算机科学 内科学
作者
Jian Zhang,Shenglan Huang,Yongkang Xu,Jianbing Wu
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:12 被引量:18
标识
DOI:10.3389/fonc.2022.763842
摘要

The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging.To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data.Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity.Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75-0.90], 0.84 [0.77-0.89], 5.14 [3.53-7.48], 0.2 [0.12-0.31], and 0.90 [0.87-0.93]; and for non-deep learning models, they were 0.77 [0.71-0.82], 0.77 [0.73-0.80], 3.30 [2.83-3.84], 0.30 [0.24-0.38], and 0.82 [0.79-0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
可爱的鬼神完成签到,获得积分10
刚刚
GoQao完成签到,获得积分10
1秒前
2秒前
斯文败类应助SMLW采纳,获得10
4秒前
善学以致用应助mingzzz1采纳,获得30
5秒前
鱼咬羊发布了新的文献求助10
5秒前
唯美发布了新的文献求助10
7秒前
9秒前
10秒前
SciGPT应助rachel03采纳,获得30
11秒前
Ava应助收声采纳,获得10
11秒前
12秒前
1122完成签到,获得积分10
12秒前
瓶子里的大好人完成签到,获得积分10
13秒前
14秒前
hqr发布了新的文献求助10
15秒前
yangzai发布了新的文献求助10
15秒前
nihao完成签到,获得积分10
15秒前
orixero应助辛子采纳,获得10
15秒前
量子星尘发布了新的文献求助50
16秒前
17秒前
18秒前
ED应助Smartan采纳,获得10
19秒前
19秒前
insane完成签到,获得积分10
21秒前
Panini发布了新的文献求助10
22秒前
Anna完成签到,获得积分10
22秒前
rachel03发布了新的文献求助30
23秒前
25秒前
27秒前
大耳朵图图完成签到,获得积分10
29秒前
jingwen发布了新的文献求助10
29秒前
Abner完成签到,获得积分10
31秒前
halabouqii发布了新的文献求助10
31秒前
娜娜完成签到 ,获得积分10
31秒前
32秒前
33秒前
34秒前
吴真好完成签到,获得积分10
36秒前
jiangchuansm完成签到,获得积分10
36秒前
高分求助中
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
Christian Women in Chinese Society: The Anglican Story 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3961083
求助须知:如何正确求助?哪些是违规求助? 3507362
关于积分的说明 11135734
捐赠科研通 3239863
什么是DOI,文献DOI怎么找? 1790434
邀请新用户注册赠送积分活动 872400
科研通“疑难数据库(出版商)”最低求助积分说明 803150