Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis

接收机工作特性 人工智能 深度学习 荟萃分析 机器学习 肝细胞癌 医学 计算机科学 内科学
作者
Jian Zhang,Shenglan Huang,Yongkang Xu,Jianbing Wu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:22
标识
DOI:10.3389/fonc.2022.763842
摘要

The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging.To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data.Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity.Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75-0.90], 0.84 [0.77-0.89], 5.14 [3.53-7.48], 0.2 [0.12-0.31], and 0.90 [0.87-0.93]; and for non-deep learning models, they were 0.77 [0.71-0.82], 0.77 [0.73-0.80], 3.30 [2.83-3.84], 0.30 [0.24-0.38], and 0.82 [0.79-0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
称心小天鹅完成签到,获得积分10
1秒前
ChenYX发布了新的文献求助10
3秒前
优雅大树完成签到,获得积分20
3秒前
Lu发布了新的文献求助10
3秒前
量子星尘发布了新的文献求助20
3秒前
笠原May发布了新的文献求助10
5秒前
搜集达人应助璃光浮月采纳,获得10
5秒前
谨慎的安柏完成签到 ,获得积分10
5秒前
5秒前
优雅大树发布了新的文献求助30
6秒前
而已完成签到,获得积分10
7秒前
cc完成签到 ,获得积分10
7秒前
7秒前
9秒前
9秒前
AquaR完成签到,获得积分10
9秒前
七月七日晴完成签到,获得积分10
10秒前
帅气爆米花应助wang采纳,获得290
12秒前
lxj发布了新的文献求助10
13秒前
13秒前
Lu完成签到,获得积分10
13秒前
香哥完成签到 ,获得积分10
13秒前
CodeCraft应助徐立涛采纳,获得10
15秒前
16秒前
卷卷卷儿完成签到 ,获得积分10
16秒前
Akim应助神奇白马儿采纳,获得10
17秒前
小文殊完成签到 ,获得积分10
17秒前
17秒前
二分三分完成签到,获得积分10
19秒前
CipherSage应助科研采纳,获得10
20秒前
追梦人发布了新的文献求助10
20秒前
可爱语芹完成签到 ,获得积分10
20秒前
猪猪hero发布了新的文献求助10
21秒前
丰知然举报jasmineee求助涉嫌违规
21秒前
guan完成签到,获得积分10
22秒前
帅气爆米花应助小翼采纳,获得30
22秒前
清茶发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
Pharmacology for Chemists: Drug Discovery in Context 400
El poder y la palabra: prensa y poder político en las dictaduras : el régimen de Franco ante la prensa y el periodismo 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5604083
求助须知:如何正确求助?哪些是违规求助? 4688908
关于积分的说明 14856973
捐赠科研通 4696430
什么是DOI,文献DOI怎么找? 2541128
邀请新用户注册赠送积分活动 1507314
关于科研通互助平台的介绍 1471851