Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis

接收机工作特性 人工智能 深度学习 荟萃分析 机器学习 肝细胞癌 医学 计算机科学 内科学
作者
Jian Zhang,Shenglan Huang,Yongkang Xu,Jianbing Wu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:18
标识
DOI:10.3389/fonc.2022.763842
摘要

The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging.To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data.Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity.Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75-0.90], 0.84 [0.77-0.89], 5.14 [3.53-7.48], 0.2 [0.12-0.31], and 0.90 [0.87-0.93]; and for non-deep learning models, they were 0.77 [0.71-0.82], 0.77 [0.73-0.80], 3.30 [2.83-3.84], 0.30 [0.24-0.38], and 0.82 [0.79-0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
3秒前
3秒前
憂xqc发布了新的文献求助10
4秒前
MQRR发布了新的文献求助10
4秒前
调研昵称发布了新的文献求助10
5秒前
6秒前
6秒前
8秒前
8秒前
haishixigua完成签到,获得积分10
9秒前
迷路曼雁发布了新的文献求助10
9秒前
收集快乐完成签到 ,获得积分10
11秒前
调研昵称发布了新的文献求助10
11秒前
儒雅尔白发布了新的文献求助10
12秒前
12秒前
13秒前
鹏826发布了新的文献求助10
16秒前
迷路曼雁完成签到,获得积分10
17秒前
大壮发布了新的文献求助10
19秒前
Gzl完成签到 ,获得积分10
20秒前
20秒前
20秒前
nihaoya172完成签到,获得积分10
21秒前
贾败完成签到,获得积分10
21秒前
矮小的觅云完成签到 ,获得积分10
22秒前
调研昵称发布了新的文献求助10
22秒前
LRxxx完成签到 ,获得积分10
23秒前
23秒前
蜡笔小新完成签到,获得积分10
23秒前
祁依欧欧完成签到,获得积分10
24秒前
D叫兽发布了新的文献求助10
25秒前
魔幻的遥完成签到,获得积分20
26秒前
NexusExplorer应助Laura567采纳,获得10
27秒前
柔弱飞雪发布了新的文献求助10
28秒前
29秒前
30秒前
30秒前
丘比特应助Joo采纳,获得10
30秒前
莓烦恼完成签到 ,获得积分10
32秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
The Conscience of the Party: Hu Yaobang, China’s Communist Reformer 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3299813
求助须知:如何正确求助?哪些是违规求助? 2934662
关于积分的说明 8470165
捐赠科研通 2608229
什么是DOI,文献DOI怎么找? 1424075
科研通“疑难数据库(出版商)”最低求助积分说明 661827
邀请新用户注册赠送积分活动 645574