Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis

接收机工作特性 人工智能 深度学习 荟萃分析 机器学习 肝细胞癌 医学 计算机科学 内科学
作者
Jian Zhang,Shenglan Huang,Yongkang Xu,Jianbing Wu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:22
标识
DOI:10.3389/fonc.2022.763842
摘要

The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging.To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data.Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity.Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75-0.90], 0.84 [0.77-0.89], 5.14 [3.53-7.48], 0.2 [0.12-0.31], and 0.90 [0.87-0.93]; and for non-deep learning models, they were 0.77 [0.71-0.82], 0.77 [0.73-0.80], 3.30 [2.83-3.84], 0.30 [0.24-0.38], and 0.82 [0.79-0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
顺利绮烟发布了新的文献求助10
1秒前
pcy发布了新的文献求助10
1秒前
可爱的函函应助dddd采纳,获得10
1秒前
1816013153发布了新的文献求助10
1秒前
2秒前
dakjdia发布了新的文献求助10
2秒前
2秒前
HAL9000完成签到,获得积分10
3秒前
Owen应助拼搏的白玉采纳,获得10
3秒前
3秒前
4秒前
夏日晚风发布了新的文献求助40
4秒前
4秒前
4秒前
4秒前
5秒前
天天快乐应助绝不从良采纳,获得10
5秒前
jon158完成签到,获得积分10
5秒前
困困酱完成签到,获得积分10
5秒前
wang完成签到,获得积分10
7秒前
8秒前
夏儿发布了新的文献求助10
8秒前
青年才俊发布了新的文献求助10
8秒前
9秒前
我行我素发布了新的文献求助10
9秒前
北城南笙发布了新的文献求助10
10秒前
10秒前
10秒前
等风发布了新的文献求助10
11秒前
虚拟刺客完成签到 ,获得积分10
12秒前
悦耳亦云完成签到 ,获得积分10
12秒前
吼吼哈哈完成签到,获得积分10
13秒前
风中天宇发布了新的文献求助10
13秒前
SSNN发布了新的文献求助10
13秒前
superbanggg发布了新的文献求助10
13秒前
苏幕遮发布了新的文献求助10
13秒前
BigKang发布了新的文献求助10
13秒前
科研通AI6应助拼搏耷采纳,获得10
14秒前
量子星尘发布了新的文献求助10
14秒前
wjy发布了新的文献求助10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5547895
求助须知:如何正确求助?哪些是违规求助? 4633315
关于积分的说明 14630622
捐赠科研通 4574970
什么是DOI,文献DOI怎么找? 2508753
邀请新用户注册赠送积分活动 1485041
关于科研通互助平台的介绍 1456069