Diagnostic Accuracy of Artificial Intelligence Based on Imaging Data for Preoperative Prediction of Microvascular Invasion in Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis

接收机工作特性 人工智能 深度学习 荟萃分析 机器学习 肝细胞癌 医学 计算机科学 内科学
作者
Jian Zhang,Shenglan Huang,Yongkang Xu,Jianbing Wu
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:12 被引量:22
标识
DOI:10.3389/fonc.2022.763842
摘要

The presence of microvascular invasion (MVI) is considered an independent prognostic factor associated with early recurrence and poor survival in hepatocellular carcinoma (HCC) patients after resection. Artificial intelligence (AI), mainly consisting of non-deep learning algorithms (NDLAs) and deep learning algorithms (DLAs), has been widely used for MVI prediction in medical imaging.To assess the diagnostic accuracy of AI algorithms for non-invasive, preoperative prediction of MVI based on imaging data.Original studies reporting AI algorithms for non-invasive, preoperative prediction of MVI based on quantitative imaging data were identified in the databases PubMed, Embase, and Web of Science. The quality of the included studies was assessed using the Quality Assessment of Diagnostic Accuracy Studies 2 (QUADAS-2) scale. The pooled sensitivity, specificity, positive likelihood ratio (PLR), and negative likelihood ratio (NLR) were calculated using a random-effects model with 95% CIs. A summary receiver operating characteristic curve and the area under the curve (AUC) were generated to assess the diagnostic accuracy of the deep learning and non-deep learning models. In the non-deep learning group, we further performed meta-regression and subgroup analyses to identify the source of heterogeneity.Data from 16 included studies with 4,759 cases were available for meta-analysis. Four studies on deep learning models, 12 studies on non-deep learning models, and two studies compared the efficiency of the two types. For predictive performance of deep learning models, the pooled sensitivity, specificity, PLR, NLR, and AUC values were 0.84 [0.75-0.90], 0.84 [0.77-0.89], 5.14 [3.53-7.48], 0.2 [0.12-0.31], and 0.90 [0.87-0.93]; and for non-deep learning models, they were 0.77 [0.71-0.82], 0.77 [0.73-0.80], 3.30 [2.83-3.84], 0.30 [0.24-0.38], and 0.82 [0.79-0.85], respectively. Subgroup analyses showed a significant difference between the single tumor subgroup and the multiple tumor subgroup in the pooled sensitivity, NLR, and AUC.This meta-analysis demonstrates the high diagnostic accuracy of non-deep learning and deep learning methods for MVI status prediction and their promising potential for clinical decision-making. Deep learning models perform better than non-deep learning models in terms of the accuracy of MVI prediction, methodology, and cost-effectiveness.https://www.crd.york.ac.uk/PROSPERO/display_record.php? RecordID=260891, ID:CRD42021260891.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
小二郎应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
上官若男应助科研通管家采纳,获得10
刚刚
wanci应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
田様应助科研通管家采纳,获得10
刚刚
无极微光应助科研通管家采纳,获得40
刚刚
无极微光应助科研通管家采纳,获得40
刚刚
今后应助科研通管家采纳,获得10
刚刚
SciGPT应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
刚刚
monly应助科研通管家采纳,获得10
刚刚
cc完成签到,获得积分10
刚刚
Owen应助科研通管家采纳,获得10
刚刚
orixero应助科研通管家采纳,获得10
刚刚
tamaco发布了新的文献求助10
刚刚
所所应助科研通管家采纳,获得10
刚刚
BowieHuang应助科研通管家采纳,获得10
刚刚
大模型应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
Lucas应助科研通管家采纳,获得10
1秒前
LewisAcid应助科研通管家采纳,获得10
1秒前
慕青应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
共享精神应助科研通管家采纳,获得10
1秒前
天天快乐应助科研通管家采纳,获得10
1秒前
爆米花应助科研通管家采纳,获得10
1秒前
田様应助科研通管家采纳,获得10
1秒前
1秒前
2秒前
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5728563
求助须知:如何正确求助?哪些是违规求助? 5313670
关于积分的说明 15314683
捐赠科研通 4875796
什么是DOI,文献DOI怎么找? 2618967
邀请新用户注册赠送积分活动 1568573
关于科研通互助平台的介绍 1525175