Sequence-Based Prediction of Food-Originated ACE Inhibitory Peptides Using Deep Learning Algorithm

人工智能 支持向量机 随机森林 人工神经网络 机器学习 深度学习 分类器(UML) 计算机科学 伪氨基酸组成 循环神经网络 化学 生物化学 二肽
作者
Margarita Terziyska,Ivelina Desseva,Zhelyazko Terziyski
出处
期刊:Lecture notes in networks and systems 卷期号:: 236-246
标识
DOI:10.1007/978-3-030-96638-6_26
摘要

In recent years, food originated bioactive peptides became a promising source of potential therapeutic agents. Predicting the biological activity of these peptides is crucial for the discovery and development of functional foods and effective peptides-based drugs. Antihypertensive peptides (AHTPs) are certainly the most reported food-derived peptides. These peptides inhibit a key enzyme in renin-angiotensin system, named angiotensin-converting enzyme (ACE), resulting in lowering of blood pressure. So far, AHTPs are obtained mainly by in vitro and in vivo protocols. This is a rather expensive and time-consuming procedure, and often require months of hard work, which is not always successful. To overcome this shortcoming, machine learning (ML) approaches are increasingly used. In this study, a Long Short Term Memory (LSTM) is used for prediction of food-derived ACE inhibitory peptides. It was chosen this recurrent deep neural network as the most suitable for sequence-based prediction. The positive datasets are collected from the following food-derived peptide databases AHTPDB, FeptideDB, BIOPEP-UWM and BioPepDB, while the negative ones peptides without antihypertensive function were gathered. Then, the feature descriptors are generated via the Chou's pseudo amino acid composition method. They are inputted to the deep neural network classifier. Finally, the proposed LSTM approach is compared with Random Forest (RF) and Support Vector Macines (SVM) classifiers. It was demonstrated by 5-fold cross-validation that the deep learning algorithm has higher predictive accuracy than the other ML algorithms. This makes it suitable for identification of AHTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助奔奔采纳,获得10
1秒前
2秒前
2秒前
Owen应助西哈哈采纳,获得10
2秒前
Jessie完成签到 ,获得积分10
2秒前
烟花应助孔雨珍采纳,获得10
3秒前
王小志发布了新的文献求助10
3秒前
科研通AI5应助SCI采纳,获得10
3秒前
net完成签到 ,获得积分10
3秒前
Sally完成签到,获得积分10
4秒前
飘逸蘑菇完成签到 ,获得积分10
4秒前
5秒前
小二郎应助tao采纳,获得10
5秒前
陈丫发布了新的文献求助10
5秒前
5秒前
5秒前
小二郎应助凉风有信9527采纳,获得10
6秒前
LEMON发布了新的文献求助20
7秒前
炜大的我完成签到,获得积分10
7秒前
haimianbaobao发布了新的文献求助10
7秒前
传奇3应助研友_nPoXoL采纳,获得10
7秒前
lpp完成签到,获得积分10
7秒前
7秒前
ww发布了新的文献求助10
7秒前
22发布了新的文献求助10
8秒前
zhui发布了新的文献求助10
8秒前
9秒前
Jenny应助哈哈哈哈采纳,获得10
10秒前
笨笨芯应助Miracle采纳,获得10
10秒前
研友_LJGpan完成签到,获得积分10
10秒前
xiaozhenA完成签到,获得积分10
10秒前
junzilan发布了新的文献求助10
10秒前
云澈发布了新的文献求助10
10秒前
Hello paper发布了新的文献求助20
11秒前
a111完成签到,获得积分10
11秒前
乐乐应助zzznznnn采纳,获得10
11秒前
哈哈完成签到,获得积分20
12秒前
阳光衣完成签到,获得积分0
12秒前
14秒前
苏兴龙关注了科研通微信公众号
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527849
求助须知:如何正确求助?哪些是违规求助? 3107938
关于积分的说明 9287239
捐赠科研通 2805706
什么是DOI,文献DOI怎么找? 1540033
邀请新用户注册赠送积分活动 716893
科研通“疑难数据库(出版商)”最低求助积分说明 709794