Sequence-Based Prediction of Food-Originated ACE Inhibitory Peptides Using Deep Learning Algorithm

人工智能 支持向量机 随机森林 人工神经网络 机器学习 深度学习 分类器(UML) 计算机科学 伪氨基酸组成 循环神经网络 化学 生物化学 二肽
作者
Margarita Terziyska,Ivelina Desseva,Zhelyazko Terziyski
出处
期刊:Lecture notes in networks and systems 卷期号:: 236-246
标识
DOI:10.1007/978-3-030-96638-6_26
摘要

In recent years, food originated bioactive peptides became a promising source of potential therapeutic agents. Predicting the biological activity of these peptides is crucial for the discovery and development of functional foods and effective peptides-based drugs. Antihypertensive peptides (AHTPs) are certainly the most reported food-derived peptides. These peptides inhibit a key enzyme in renin-angiotensin system, named angiotensin-converting enzyme (ACE), resulting in lowering of blood pressure. So far, AHTPs are obtained mainly by in vitro and in vivo protocols. This is a rather expensive and time-consuming procedure, and often require months of hard work, which is not always successful. To overcome this shortcoming, machine learning (ML) approaches are increasingly used. In this study, a Long Short Term Memory (LSTM) is used for prediction of food-derived ACE inhibitory peptides. It was chosen this recurrent deep neural network as the most suitable for sequence-based prediction. The positive datasets are collected from the following food-derived peptide databases AHTPDB, FeptideDB, BIOPEP-UWM and BioPepDB, while the negative ones peptides without antihypertensive function were gathered. Then, the feature descriptors are generated via the Chou's pseudo amino acid composition method. They are inputted to the deep neural network classifier. Finally, the proposed LSTM approach is compared with Random Forest (RF) and Support Vector Macines (SVM) classifiers. It was demonstrated by 5-fold cross-validation that the deep learning algorithm has higher predictive accuracy than the other ML algorithms. This makes it suitable for identification of AHTPs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
bkagyin应助majm采纳,获得10
4秒前
皮皮虾完成签到 ,获得积分10
4秒前
5秒前
唐tang完成签到,获得积分10
5秒前
5秒前
舒适的藏花完成签到 ,获得积分10
7秒前
9秒前
星辰大海应助科研通管家采纳,获得10
10秒前
orixero应助科研通管家采纳,获得10
10秒前
顾矜应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
somin应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
8R60d8应助科研通管家采纳,获得10
10秒前
NexusExplorer应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
合适台灯发布了新的文献求助10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
思源应助科研通管家采纳,获得10
11秒前
11秒前
11秒前
ED应助科研通管家采纳,获得10
11秒前
带志完成签到 ,获得积分10
11秒前
曾宪俊完成签到 ,获得积分10
12秒前
香蕉觅云应助baishao采纳,获得10
12秒前
研友_5Zl9D8发布了新的文献求助10
12秒前
Mao完成签到,获得积分10
14秒前
hilly发布了新的文献求助10
15秒前
周周完成签到 ,获得积分10
15秒前
15秒前
wzh19940205完成签到,获得积分10
16秒前
全球完成签到,获得积分10
19秒前
19秒前
嗯嗯你说完成签到,获得积分10
20秒前
20秒前
FDSDK完成签到,获得积分20
22秒前
lalala发布了新的文献求助10
22秒前
23秒前
将来完成签到,获得积分10
23秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966124
求助须知:如何正确求助?哪些是违规求助? 3511501
关于积分的说明 11158638
捐赠科研通 3246146
什么是DOI,文献DOI怎么找? 1793292
邀请新用户注册赠送积分活动 874284
科研通“疑难数据库(出版商)”最低求助积分说明 804324