化学
污染物
降级(电信)
同种类的
化学工程
芬顿反应
共价键
环境化学
催化作用
有机化学
计算机科学
电信
热力学
物理
工程类
作者
Lin Niu,Xiaoli Zhao,Zhi Tang,Fengchang Wu,Junyu Wang,Qitao Lei,Liang Wan,Xia Wang,Miaomiao Teng,Xiao Zhang
标识
DOI:10.1016/j.seppur.2022.121145
摘要
• The magnetic COFs was prepared by ball milling method. • The magnetic COFs showed high superparamagnetic properties. • Fenton-like catalytic activity of magnetic COFs was higher than other catalysts. • The heterogeneous and homogeneous Fenton reaction mechanism was also explored. • It provides a new strategy for magnetic COFs prepared by ball milling method. The practical application of covalent organic frameworks (COFs) is limited because of the difficulties in rapid separation. This issue is expected to be solved with the emergence of magnetic nanoparticles. However, it remains challenging to quickly prepare magnetic COFs with high catalytic activity. In this study, a magnetic COF material (Fe 3 O 4 @TpMA) was prepared using a ball milling method based on grinding amino-functionalized magnetic nanoparticles (Fe 3 O 4 -NH 2 ) and COFs (TpMA). The -C = N bond were as a bridge between Fe 3 O 4 and COFs. Transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS) characterizations showed that the doping of Fe 3 O 4 nanoparticles did not destroy the structure of the COFs. In addition, Fe 3 O 4 @TpMA exhibited excellent superparamagnetic properties that were conducive to the magnetic separation of pollutants and catalysts. In the Fe 3 O 4 @TpMA + H 2 O 2 system, 88.1% of methyl orange (MO) was degraded within 40 min. The degradation rate of MO in the Fe 3 O 4 @TpMA + H 2 O 2 system was 4.2, 8.0, and 11.8 times that in the Fe 3 O 4 -NH 2 + H 2 O 2 , TpMA + H 2 O 2 , and mixed material (Fe 3 O 4 -NH 2 /TpMA) + H 2 O 2 systems, respectively. Furthermore, experimental parameters such as pollutant concentration, and catalyst dosage played an important role in the degradation of MO. The Fe 3 O 4 @TpMA catalyst also achieved highly efficient degradation of MO under weakly acidic conditions (pH = 6.38). The degradation mechanism is complex, involving the heterogeneous Fenton mechanism as the main step, and the homogeneous Fenton mechanism as the auxiliary step. This study aims to provide a new strategy for the preparation of magnetic COFs via mechanical grinding.
科研通智能强力驱动
Strongly Powered by AbleSci AI