DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection

激光雷达 计算机科学 人工智能 计算机视觉 点云 稳健性(进化) 目标检测 像素 情态动词 行人检测 钥匙(锁) 遥感 模式识别(心理学) 地理 行人 生物化学 化学 考古 高分子化学 基因 计算机安全
作者
Yingwei Li,Adams Wei Yu,Tianjian Meng,Ben Caine,Jiquan Ngiam,Daiyi Peng,Junyang Shen,Yifeng Lu,Denny Zhou,Quoc V. Le,Alan Yuille,Mingxing Tan
标识
DOI:10.1109/cvpr52688.2022.01667
摘要

Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving. While prevalent multi-modal methods [34], [36] simply decorate raw lidar point clouds with camera features and feed them directly to existing 3D detection models, our study shows that fusing camera features with deep lidar features instead of raw points, can lead to better performance. However, as those features are often augmented and aggregated, a key challenge in fusion is how to effectively align the transformed features from two modalities. In this paper, we propose two novel techniques: InverseAug that inverses geometric-related augmentations, e.g., rotation, to enable accurate geometric alignment between lidar points and image pixels, and LearnableAlign that leverages cross-attention to dynamically capture the correlations between image and lidar features during fusion. Based on InverseAug and LearnableAlign, we develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods. For example, DeepFusion improves Point-Pillars, CenterPoint, and 3D-MAN baselines on Pedestrian detection for 6.7,8.9, and 6.2 LEVEL_2 APH, respectively. Notably, our models achieve state-of-the-art performance on Waymo Open Dataset, and show strong model robustness against input corruptions and out-of-distribution data. Code will be publicly available at https://github.com/tensorflow/lingvo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
能干的小蘑菇完成签到,获得积分10
刚刚
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
Akim应助科研通管家采纳,获得10
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
我是老大应助科研通管家采纳,获得10
刚刚
刚刚
所所应助科研通管家采纳,获得10
刚刚
所所应助科研通管家采纳,获得10
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
1秒前
FashionBoy应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
华仔应助科研通管家采纳,获得10
1秒前
luxkex完成签到,获得积分10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
CodeCraft应助科研通管家采纳,获得10
1秒前
1秒前
ding应助科研通管家采纳,获得10
1秒前
叮叮当当完成签到,获得积分10
1秒前
1秒前
heisebeileimao应助科研通管家采纳,获得100
1秒前
ding应助科研通管家采纳,获得10
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
heisebeileimao应助科研通管家采纳,获得100
1秒前
NexusExplorer应助科研通管家采纳,获得10
1秒前
老福贵儿应助科研通管家采纳,获得10
1秒前
1秒前
Garrett完成签到 ,获得积分10
2秒前
小波完成签到,获得积分10
2秒前
1sunpf完成签到,获得积分10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
从k到英国情人 1700
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5773843
求助须知:如何正确求助?哪些是违规求助? 5614219
关于积分的说明 15433109
捐赠科研通 4906284
什么是DOI,文献DOI怎么找? 2640157
邀请新用户注册赠送积分活动 1587995
关于科研通互助平台的介绍 1543018