DeepFusion: Lidar-Camera Deep Fusion for Multi-Modal 3D Object Detection

激光雷达 计算机科学 人工智能 计算机视觉 点云 稳健性(进化) 目标检测 像素 情态动词 行人检测 遥感 模式识别(心理学) 地理 行人 生物化学 化学 考古 高分子化学 基因
作者
Yingwei Li,Adams Wei Yu,Tianjian Meng,Ben Caine,Jiquan Ngiam,Daiyi Peng,Junyang Shen,Bo Wu,Yifeng Lu,Denny Zhou,Quoc V. Le,Alan Yuille,Mingxing Tan
标识
DOI:10.1109/cvpr52688.2022.01667
摘要

Lidars and cameras are critical sensors that provide complementary information for 3D detection in autonomous driving. While prevalent multi-modal methods [34], [36] simply decorate raw lidar point clouds with camera features and feed them directly to existing 3D detection models, our study shows that fusing camera features with deep lidar features instead of raw points, can lead to better performance. However, as those features are often augmented and aggregated, a key challenge in fusion is how to effectively align the transformed features from two modalities. In this paper, we propose two novel techniques: InverseAug that inverses geometric-related augmentations, e.g., rotation, to enable accurate geometric alignment between lidar points and image pixels, and LearnableAlign that leverages cross-attention to dynamically capture the correlations between image and lidar features during fusion. Based on InverseAug and LearnableAlign, we develop a family of generic multi-modal 3D detection models named DeepFusion, which is more accurate than previous methods. For example, DeepFusion improves Point-Pillars, CenterPoint, and 3D-MAN baselines on Pedestrian detection for 6.7,8.9, and 6.2 LEVEL_2 APH, respectively. Notably, our models achieve state-of-the-art performance on Waymo Open Dataset, and show strong model robustness against input corruptions and out-of-distribution data. Code will be publicly available at https://github.com/tensorflow/lingvo.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
刘星星完成签到,获得积分10
3秒前
5秒前
认真又亦完成签到 ,获得积分10
8秒前
upupup发布了新的文献求助10
10秒前
11秒前
sxw完成签到,获得积分20
11秒前
现实的半芹完成签到 ,获得积分10
13秒前
13秒前
思源应助eeeee采纳,获得10
17秒前
ddddd发布了新的文献求助10
18秒前
sxw发布了新的文献求助10
19秒前
22秒前
略略略完成签到 ,获得积分10
23秒前
24秒前
26秒前
sssss发布了新的文献求助10
26秒前
SciGPT应助科研混子采纳,获得20
26秒前
GDL完成签到 ,获得积分10
27秒前
27秒前
mm发布了新的文献求助10
28秒前
科研通AI2S应助sxw采纳,获得10
29秒前
香蕉觅云应助yye采纳,获得10
31秒前
JYX完成签到 ,获得积分10
33秒前
33秒前
牪犇完成签到 ,获得积分10
34秒前
踏实的曲奇完成签到,获得积分20
34秒前
所所应助upupup采纳,获得10
35秒前
35秒前
37秒前
铁甲小宝发布了新的文献求助30
38秒前
LN发布了新的文献求助10
41秒前
孤僻发布了新的文献求助10
42秒前
愉快天亦完成签到,获得积分10
43秒前
燕尔蓝完成签到,获得积分10
44秒前
梨水儿完成签到 ,获得积分10
44秒前
46秒前
46秒前
beiyoumilu发布了新的文献求助10
47秒前
Lucky完成签到,获得积分10
47秒前
高分求助中
Sustainability in Tides Chemistry 2800
Kinetics of the Esterification Between 2-[(4-hydroxybutoxy)carbonyl] Benzoic Acid with 1,4-Butanediol: Tetrabutyl Orthotitanate as Catalyst 1000
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3138630
求助须知:如何正确求助?哪些是违规求助? 2789630
关于积分的说明 7791721
捐赠科研通 2445972
什么是DOI,文献DOI怎么找? 1300801
科研通“疑难数据库(出版商)”最低求助积分说明 626058
版权声明 601079