Geographical POI recommendation for Internet of Things: A federated learning approach using matrix factorization

计算机科学 上传 矩阵分解 奇异值分解 兴趣点 随机梯度下降算法 人气 梯度下降 互联网 推荐系统 数据挖掘 情报检索 机器学习 人工智能 万维网 量子力学 社会心理学 物理 人工神经网络 特征向量 心理学
作者
Jiwei Huang,Zeyu Tong,Zi-Han Feng
出处
期刊:International Journal of Communication Systems [Wiley]
被引量:40
标识
DOI:10.1002/dac.5161
摘要

With the popularity of Internet of Things (IoT), Point-of-Interest (POI) recommendation has become an important application for location-based services (LBS). Meanwhile, there is an increasing requirement from IoT devices on the privacy of user sensitive data via wireless communications. In order to provide preferable POI recommendations while protecting user privacy of data communication in a distributed collaborative environment, this paper proposes a federated learning (FL) approach of geographical POI recommendation. The POI recommendation is formulated by an optimization problem of matrix factorization, and singular value decomposition (SVD) technique is applied for matrix decomposition. After proving the nonconvex property of the optimization problem, we further introduce stochastic gradient descent (SGD) into SVD and design an FL framework for solving the POI recommendation problem in a parallel manner. In our FL scheme, only calculated gradient information is uploaded from users to the FL server while all the users manage their rating and geographic preference data on their own devices for privacy protection during communications. Finally, real-world dataset from large-scale LBS enterprise is adopted for conducting extensive experiments, whose experimental results validate the efficacy of our approach.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Hello应助科研通管家采纳,获得10
刚刚
隐形曼青应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
刚刚
科研通AI6应助科研通管家采纳,获得10
1秒前
cjl应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Hello应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
Ava应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
Hello应助科研通管家采纳,获得10
1秒前
领导范儿应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
能干巨人应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
1秒前
汉堡包应助科研通管家采纳,获得10
1秒前
Criminology34应助科研通管家采纳,获得10
1秒前
核桃应助科研通管家采纳,获得30
1秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
领导范儿应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
李健应助科研通管家采纳,获得10
2秒前
Criminology34应助科研通管家采纳,获得10
2秒前
浮游应助科研通管家采纳,获得10
2秒前
2秒前
科研通AI6应助科研通管家采纳,获得10
2秒前
传奇3应助科研通管家采纳,获得10
2秒前
2秒前
momo应助科研通管家采纳,获得10
2秒前
2秒前
CodeCraft应助宋礼采纳,获得10
2秒前
2秒前
2秒前
英姑应助科研通管家采纳,获得10
2秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
Superabsorbent Polymers 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5711679
求助须知:如何正确求助?哪些是违规求助? 5205113
关于积分的说明 15264986
捐赠科研通 4863917
什么是DOI,文献DOI怎么找? 2611005
邀请新用户注册赠送积分活动 1561363
关于科研通互助平台的介绍 1518685