A Machine Learning Classifier to Identify Lung Transplant Recipients (LTRs) Likely to Develop Invasive Aspergillosis (IA) One Year After Transplantation

医学 肺移植 逻辑回归 移植 内科学 曲菌病 队列 朴素贝叶斯分类器 贝叶斯定理 人工智能 机器学习 贝叶斯概率 免疫学 计算机科学 支持向量机
作者
Laura N Walti,Armelle Pérez-Cortés Villalobos,R. Bittermann,Meghan Aversa,L.G. Singer,Shaf Keshavjee,William Klement,Shahid Husain
出处
期刊:Journal of Heart and Lung Transplantation [Elsevier]
卷期号:41 (4): S396-S397
标识
DOI:10.1016/j.healun.2022.01.1556
摘要

Purpose This study investigates the risk of developing invasive aspergillosis (IA) in LTRs in the first year of follow-up. We developed and validated 3 diverse machine learning (ML) models to identify patients likely to develop IA in the first year after lung transplantation. Methods A total of 791 LTRs from January 2010 to January 2017 were followed-up for 1 year after transplantation. IA diagnosis was established as per ISHLT criteria. The data consisted of 13 variables listed in Table 1. Based on transplantation dates, we divided the cohort into 553 and 238 cases for development and validation respectively. We used 3 diverse classification methods (Naïve Bayes, Decision Tree, and Simple Logistic regression) to construct ML classification models. Results The use of statins and the presence of Aspergillus colonization post-lung transplant present strong indicators related to IA 1 year after lung transplant (Table 1). The Naïve Bayes classifier (Table 2) achieved sensitivity of 83.3% (CI95% 52-98), specificity 66.4% (CI95% 60-73) and AUC of 86.3% (CI95% 73-100) and presented the most consistent classification performance between development and validation as shown. All 3 ML methods independently utilized the same predictor variables and achieved similar prediction performance (Table 2). Conclusion The validation of 3 independent classification models showed that the Aspergillus colonization was indicative of the development of IA and use of statin was associated with a fewer cases of IA. Further clinical validation to assess the utility of using these models is warranted. This study investigates the risk of developing invasive aspergillosis (IA) in LTRs in the first year of follow-up. We developed and validated 3 diverse machine learning (ML) models to identify patients likely to develop IA in the first year after lung transplantation. A total of 791 LTRs from January 2010 to January 2017 were followed-up for 1 year after transplantation. IA diagnosis was established as per ISHLT criteria. The data consisted of 13 variables listed in Table 1. Based on transplantation dates, we divided the cohort into 553 and 238 cases for development and validation respectively. We used 3 diverse classification methods (Naïve Bayes, Decision Tree, and Simple Logistic regression) to construct ML classification models. The use of statins and the presence of Aspergillus colonization post-lung transplant present strong indicators related to IA 1 year after lung transplant (Table 1). The Naïve Bayes classifier (Table 2) achieved sensitivity of 83.3% (CI95% 52-98), specificity 66.4% (CI95% 60-73) and AUC of 86.3% (CI95% 73-100) and presented the most consistent classification performance between development and validation as shown. All 3 ML methods independently utilized the same predictor variables and achieved similar prediction performance (Table 2). The validation of 3 independent classification models showed that the Aspergillus colonization was indicative of the development of IA and use of statin was associated with a fewer cases of IA. Further clinical validation to assess the utility of using these models is warranted.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
所所应助April采纳,获得10
1秒前
lovelife发布了新的文献求助10
1秒前
完美世界应助still采纳,获得10
2秒前
maershui发布了新的文献求助10
2秒前
调皮嫣娆发布了新的文献求助10
2秒前
2秒前
2秒前
酷酷冰之发布了新的文献求助30
3秒前
传奇3应助llx采纳,获得10
4秒前
小毛毛发布了新的文献求助10
4秒前
ZYYYY完成签到,获得积分10
4秒前
小程同学发布了新的文献求助10
5秒前
a焦发布了新的文献求助10
5秒前
6秒前
兴奋土豆发布了新的文献求助10
6秒前
laryc完成签到,获得积分10
6秒前
6秒前
AQI完成签到,获得积分10
8秒前
越遇发布了新的文献求助10
8秒前
8秒前
bkagyin应助专注的糖豆采纳,获得10
8秒前
微笑的土豆完成签到,获得积分10
9秒前
10秒前
漆漆完成签到,获得积分20
10秒前
科目三应助强砸采纳,获得10
11秒前
自觉啤酒发布了新的文献求助10
11秒前
maershui完成签到,获得积分10
12秒前
方圆学术完成签到,获得积分10
12秒前
13秒前
在水一方应助执着翠芙采纳,获得10
14秒前
雪山飞鹰发布了新的文献求助10
15秒前
15秒前
caizx完成签到,获得积分10
17秒前
zxb发布了新的文献求助10
17秒前
Nebula发布了新的文献求助20
18秒前
共享精神应助hihi采纳,获得10
18秒前
朱玉发布了新的文献求助10
19秒前
19秒前
20秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3465178
求助须知:如何正确求助?哪些是违规求助? 3058375
关于积分的说明 9061227
捐赠科研通 2748726
什么是DOI,文献DOI怎么找? 1508055
科研通“疑难数据库(出版商)”最低求助积分说明 696770
邀请新用户注册赠送积分活动 696451