An Adaptive Cooperative Coevolutionary Algorithm for Parallel Feature Selection in High-Dimensional Datasets

计算机科学 可扩展性 特征选择 机器学习 人工智能 维数之咒 分类器(UML) 元启发式 差异进化 人口 特征(语言学) 数据挖掘 哲学 社会学 人口学 数据库 语言学
作者
Marjan Firouznia,Giuseppe A. Trunfio
标识
DOI:10.1109/pdp55904.2022.00040
摘要

Nowadays, it is common in many disciplines and application fields to collect large volumes of data characterized by a high number of features. Such datasets are at the basis of modern applications of supervised Machine Learning, where the goal is to create a classifier for newly presented data. However, it is well known that the presence of irrelevant features in the dataset can lead to a harder learning phase and, above all, can produce suboptimal classifiers. For this reason, the ability to select an appropriate subset of the available features is becoming increasingly important. Traditionally, optimization metaheuristics have been used with success in the task of feature selection. However, many of the approaches presented in the literature are not applicable to datasets with thousands of features since common optimization algorithms often suffer from poor scalability with respect to the size of the search space. In this paper, the problem of feature subset optimization is successfully addressed by a cooperative coevolutionary algorithm based on Differential Evolution. In the proposed algorithm, parallelized for multi-threaded execution on shared-memory architectures, a suitable strategy for reducing the dimensionality of the search space and adapting the population size during the optimization results in a significant performance. A numerical investigation on some high-dimensional datasets show that, in most cases, the proposed approach can achieve smaller feature subsets and higher classification performance than other state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
www完成签到,获得积分10
刚刚
Polymer72应助我要睡觉采纳,获得10
1秒前
3秒前
liugg完成签到,获得积分10
3秒前
liyah完成签到,获得积分10
4秒前
鱿鱼炒黄瓜完成签到,获得积分10
4秒前
冷静剑成完成签到,获得积分10
4秒前
ML发布了新的文献求助10
4秒前
巴基斯坦农民完成签到,获得积分20
5秒前
Owen应助Who1990采纳,获得10
5秒前
和谐曼凝完成签到 ,获得积分10
6秒前
7秒前
zxx完成签到 ,获得积分10
7秒前
苏我入鹿完成签到,获得积分10
7秒前
科研通AI2S应助我要睡觉采纳,获得10
7秒前
YY发布了新的文献求助10
7秒前
盛夏之末完成签到,获得积分10
8秒前
完美世界应助fishbig采纳,获得10
8秒前
8秒前
贝儿发布了新的文献求助10
10秒前
Ava应助njzhangyanyang采纳,获得10
10秒前
nihao发布了新的文献求助10
10秒前
11秒前
大外科小伊森完成签到,获得积分10
11秒前
顾矜应助机智的书竹采纳,获得10
12秒前
Atom完成签到,获得积分10
12秒前
火龙果完成签到,获得积分10
12秒前
maomao完成签到,获得积分10
13秒前
乐乐应助blue2021采纳,获得10
13秒前
15秒前
15秒前
研途顺利完成签到,获得积分10
15秒前
稳定上分发布了新的文献求助10
16秒前
打打应助Q97采纳,获得10
16秒前
17秒前
陈陈陈发布了新的文献求助10
19秒前
QAQSS完成签到 ,获得积分10
19秒前
19秒前
19秒前
机智的书竹完成签到,获得积分10
20秒前
高分求助中
Solution Manual for Strategic Compensation A Human Resource Management Approach 1200
Natural History of Mantodea 螳螂的自然史 1000
Glucuronolactone Market Outlook Report: Industry Size, Competition, Trends and Growth Opportunities by Region, YoY Forecasts from 2024 to 2031 800
A Photographic Guide to Mantis of China 常见螳螂野外识别手册 800
Autoregulatory progressive resistance exercise: linear versus a velocity-based flexible model 500
The analysis and solution of partial differential equations 400
Sociocultural theory and the teaching of second languages 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3339442
求助须知:如何正确求助?哪些是违规求助? 2967328
关于积分的说明 8629617
捐赠科研通 2646841
什么是DOI,文献DOI怎么找? 1449385
科研通“疑难数据库(出版商)”最低求助积分说明 671382
邀请新用户注册赠送积分活动 660253