生物传感器
检出限
适体
虎耳草毒素
线性范围
电极
介电谱
铂纳米粒子
化学
色谱法
分析化学(期刊)
材料科学
纳米技术
电化学
毒素
生物化学
物理化学
生物
遗传学
作者
Jeong Ah Park,Namgook Kwon,Eunhae Park,Younghun Kim,Hongje Jang,Junhong Min,Taek Lee
标识
DOI:10.1016/j.bios.2022.114300
摘要
Cyanotoxins are toxins produced by cyanobacteria; they negatively impact water resources used by humans and disrupt ecosystems worldwide. Among cyanotoxins, saxitoxin (STX) is a small molecule that causes paralysis in humans and contamination in freshwater resources. To monitor low concentration of STX levels, a sensitive and high fidelity detection system is required. In this study, a round-type micro-gap electrode (RMGE) was fabricated that provides the high signal fidelity for STX detection in real freshwater sample. The RMGE has the 15 pairs of identical electrode wire length between gap that gives the high signal fidelity. In addition, the sensitivity for STX detection was improved by introducing the porous platinum nanoparticle (pPtNP) that enahced the electrochemical sensitivity and the STX aptamer was used as the bioprobe. An electrochemical measurement method (square wave voltammetry (SWV) and electrochemical impedance spectroscopy (EIS)) was introduced to construct STX biosensor. To evaluate the biosensor performance, the limit of detection (LOD) and selectivity test were performed on real freshwater samples. The biosensor demonstrated high selectivity even in freshwater samples over a wide linear concentration range of 10 pg/mL to 1 μg/mL and a detection limit of 4.669 pg/mL. These results suggest that the designed biosensor shows a wide range of possibilities for the detection of toxicants in freshwater that provide the new direction to the biosensor electrode design.
科研通智能强力驱动
Strongly Powered by AbleSci AI