Deep learning-based segmental analysis of fish for biomass estimation in an occulted environment

人工智能 生物量(生态学) 环境科学 能见度 最小边界框 计算机科学 水产养殖 数学 统计 计算机视觉 模式识别(心理学) 生态学 渔业 生物 地理 图像(数学) 气象学
作者
N. Abinaya,D. Susan,Rakesh Kumar Sidharthan
出处
期刊:Computers and Electronics in Agriculture [Elsevier BV]
卷期号:197: 106985-106985 被引量:6
标识
DOI:10.1016/j.compag.2022.106985
摘要

Fish biomass is one of the reliable parameters that can provide insight into fish and environmental health. Estimation of biomass in a dense and occulted environment is an inevitable and challenging task in modern aquaculture industries, which has been addressed in this work. The proposed work aims to determine the length features of fish using a deep learning-based segmental analysis technique. It tends to analyze the visibility of fish segments like head, body, and tail to define a completely visible fish (CVF). YOLOv4 (You look only once – Version-4) deep learning model is trained and used to detect the fish head, body, and tail segments. The detected segments are associated using sequence constrained nearest neighborhood (NN) association technique guided with fish head orientation. Fish length is estimated using the measurement points identified in the CVF. The measurement point includes head-start, body-center, and tail-end points, which are identified using a convex hull and oriented bounding box (BB). A calibration curve expressing the length-mass relation is used to determine the fish biomass from the estimated length. The proposed methodology is applied to determine the biomass of the genetically improved farmed tilapia (GIFT) fishes in an occulted environment. Experimental results illustrate a 0.9451 mAP of the trained YOLOv4 model and about 95.4% CVFs are detected accurately. A reliable accuracy of 94.15% and 91.52% is observed with testing and validation image sets respectively for biomass estimation.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Asoqiang发布了新的文献求助10
1秒前
1秒前
一二三四五完成签到,获得积分10
1秒前
ymmmaomao23发布了新的文献求助10
1秒前
2秒前
3秒前
淡定汉堡发布了新的文献求助10
4秒前
4秒前
zojoy完成签到,获得积分10
4秒前
5秒前
5秒前
心灵美鑫完成签到 ,获得积分10
6秒前
无极完成签到 ,获得积分10
7秒前
zzz发布了新的文献求助10
7秒前
DrJiang完成签到,获得积分10
8秒前
岳小龙完成签到 ,获得积分10
8秒前
脑洞疼应助懒洋洋采纳,获得10
9秒前
10秒前
XD.东发布了新的文献求助10
10秒前
asd发布了新的文献求助10
10秒前
yyk发布了新的文献求助10
10秒前
淡定汉堡完成签到,获得积分10
10秒前
12秒前
Akim应助吗喽采纳,获得10
13秒前
now发布了新的文献求助10
13秒前
二指弹完成签到 ,获得积分10
13秒前
好好好发布了新的文献求助10
14秒前
吴彦祖完成签到,获得积分10
16秒前
羲和完成签到,获得积分10
16秒前
16秒前
wanci应助昵称无法显示采纳,获得10
16秒前
DijiaXu应助咕咕咕咕咕纯采纳,获得10
17秒前
ZZ驳回了wy.he应助
17秒前
17秒前
18秒前
xyZ发布了新的文献求助10
19秒前
Ginkgo完成签到,获得积分10
19秒前
香蕉梨愁完成签到,获得积分10
20秒前
mqq发布了新的文献求助10
20秒前
111完成签到,获得积分20
21秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 360
Atlas of Interventional Pain Management 300
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4010961
求助须知:如何正确求助?哪些是违规求助? 3550599
关于积分的说明 11306013
捐赠科研通 3284931
什么是DOI,文献DOI怎么找? 1810918
邀请新用户注册赠送积分活动 886594
科研通“疑难数据库(出版商)”最低求助积分说明 811514