Robust Models to Predict Coal Wettability for CO2 Sequestration Applications

润湿 甲烷 接触角 煤矿开采 固碳 环境科学 石油工程 二氧化碳 土壤科学 材料科学 化学 地质学 废物管理 工程类 复合材料 有机化学
作者
Ahmed Farid Ibrahim
标识
DOI:10.4043/31776-ms
摘要

Abstract Carbon dioxide (CO2) sequestration in underground formations is one of the effective processes of decreasing carbon emissions. CO2 injection in coalbeds improves methane production from coal formations (ECBM) with storing CO2 for environmental purposes. The performance ECBM process and CO2 injection depend on the wettability behavior in the coal/water/CO2 system. The wettability can be measured using different experiments; however, these measurements are time-consuming, expensive, and highly inconsistent. Therefore, this paper aims to apply Linear regression (LR), XGBoost Model, and random forests (RF) as machine learning (ML) tools to predict the contact angle in the coal–water–CO2 system. A dataset of 250 points was collected for different coal samples at different conditions. The ML methods were used to predict coal-water–CO2 contact angle (CA) as a function of coal properties, system pressure, and temperature. The results from LR, XGBOOST, and RF models showed their competency to predict the contact angle in the coal/water/CO2 system as a function of coal properties and the system conditions. The R values between actual and model CA from the LR model were found to be 0.86 and 0.87 compared to 0.99, and 0.97 from the RF model. The XGBOOST model shows an R-value of 0.99 and 0.96 in the different datasets. AAPE was less than 13% in the three ML models. This study provides ML applications to accurately forecast the contact angle in the coal–water–CO2 system based on the coal properties, pressure and temperature, and water salinity without the need for experimental measurements of complicated calculations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
asheng98完成签到 ,获得积分10
1秒前
FR应助宋仔仔爱吃糖采纳,获得20
2秒前
小马甲应助橙花采纳,获得10
2秒前
Fascinate完成签到 ,获得积分10
3秒前
草原狼完成签到,获得积分10
5秒前
是猪猪呀完成签到,获得积分10
6秒前
8秒前
apollo3232完成签到,获得积分10
9秒前
Akim应助OVERSEER采纳,获得10
10秒前
合适书芹完成签到,获得积分10
11秒前
哈哈哈完成签到,获得积分10
11秒前
12秒前
饭神仙鱼完成签到,获得积分10
12秒前
13秒前
张庭玉发布了新的文献求助10
14秒前
木习完成签到,获得积分10
14秒前
烟花应助henrywang采纳,获得10
15秒前
聂珩完成签到,获得积分10
16秒前
ding应助Vincent采纳,获得10
16秒前
孤独雨梅完成签到,获得积分10
16秒前
HEIKU应助科研通管家采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得30
18秒前
爆米花应助科研通管家采纳,获得10
18秒前
JamesPei应助科研通管家采纳,获得10
18秒前
隐形曼青应助科研通管家采纳,获得10
18秒前
Jasper应助科研通管家采纳,获得10
18秒前
大个应助科研通管家采纳,获得10
18秒前
天天快乐应助科研通管家采纳,获得10
18秒前
HEIKU应助科研通管家采纳,获得10
18秒前
CipherSage应助科研通管家采纳,获得10
18秒前
丘比特应助科研通管家采纳,获得30
18秒前
华仔应助科研通管家采纳,获得10
18秒前
HEIKU应助科研通管家采纳,获得10
19秒前
19秒前
19秒前
思源应助蔡蔡不菜菜采纳,获得10
20秒前
20秒前
20秒前
洪先生完成签到 ,获得积分10
21秒前
wjw发布了新的文献求助10
23秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Handbook of Qualitative Cross-Cultural Research Methods 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137206
求助须知:如何正确求助?哪些是违规求助? 2788244
关于积分的说明 7785188
捐赠科研通 2444219
什么是DOI,文献DOI怎么找? 1299854
科研通“疑难数据库(出版商)”最低求助积分说明 625606
版权声明 601011