清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

A Two-Level Dynamic Adaptive Network for Medical Image Fusion

计算机科学 图像融合 人工智能 融合机制 深度学习 融合 基本事实 特征提取 正电子发射断层摄影术 传感器融合 医学影像学 模式识别(心理学) 机器学习 图像(数学) 计算机视觉 核医学 医学 语言学 哲学 脂质双层融合
作者
Wanwan Huang,Han Zhang,Xiongwen Quan,Jia Wang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:71: 1-17 被引量:7
标识
DOI:10.1109/tim.2022.3169546
摘要

The research of deep learning-based methods for image fusion has become a current hotspot. Medical image fusion with the problem of few samples also lacks a unified end-to-end model for the input of different modal pairs. In this article, we propose a two-level dynamic adaptive network for medical image fusion, which addresses the above two problems and provides a unified fusion framework to take the advantage of different modal pairs. Specifically, we develop a dynamic meta-learning method on task level, which achieves a dynamical meta-knowledge transfer from the heterogeneous task of multifocus image fusion to medical image fusion by dynamic convolution decomposition (DCD). Then, we provide an efficient adaptive fusion method on multimodal feature level, which uses dynamic attention mechanism and dynamic channel fusion mechanism to fuse features of different aspects. For model evaluation, we have done the qualitative and quantitative tests on the transferred multifocus deep network and verified its superior fusion performance. On this basis, the experiments are carried out on the public datasets of the two most commonly used modal pairs (computerized tomography (CT)-magnetic resonance imaging (MRI) and positron emission tomography (PET)-MRI) and show that our hierarchical model is superior to the state-of-the-art methods in terms of visual effects and quantitative measurement. Our code is publicly available at https://github.com/zhanglabNKU/TDAN .

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
房天川完成签到 ,获得积分10
2秒前
临兵者完成签到 ,获得积分10
3秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
开放青旋应助科研通管家采纳,获得10
34秒前
科研通AI2S应助科研通管家采纳,获得10
34秒前
科研通AI6应助科研通管家采纳,获得10
34秒前
37秒前
47秒前
勤奋流沙完成签到 ,获得积分10
53秒前
朴素海亦完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
2分钟前
2分钟前
小白菜完成签到,获得积分10
2分钟前
2分钟前
袁青寒完成签到,获得积分10
2分钟前
2分钟前
3分钟前
3分钟前
TEMPO发布了新的文献求助10
3分钟前
魔术师完成签到 ,获得积分10
3分钟前
3分钟前
瞿寒完成签到,获得积分10
3分钟前
快乐的笑阳完成签到,获得积分10
3分钟前
3分钟前
3分钟前
3分钟前
香蕉觅云应助huenguyenvan采纳,获得10
3分钟前
李健应助阿萨卡先生采纳,获得10
3分钟前
3分钟前
4分钟前
4分钟前
4分钟前
4分钟前
4分钟前
Ava应助阿萨卡先生采纳,获得10
4分钟前
ZaZa完成签到,获得积分10
4分钟前
4分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5715085
求助须知:如何正确求助?哪些是违规求助? 5230157
关于积分的说明 15274003
捐赠科研通 4866162
什么是DOI,文献DOI怎么找? 2612714
邀请新用户注册赠送积分活动 1562934
关于科研通互助平台的介绍 1520210