清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Towards more efficient ophthalmic disease classification and lesion location via convolution transformer

人工智能 计算机科学 卷积神经网络 光学相干层析成像 模式识别(心理学) 深度学习 散斑噪声 卷积(计算机科学) 计算 变压器 计算机视觉 斑点图案 算法 人工神经网络 医学 电压 放射科 物理 量子力学
作者
Huajie Wen,Jian Zhao,Shaohua Xiang,Lin Lin,Chengjian Liu,Tao Wang,Lin An,Lixin Liang,Bingding Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:220: 106832-106832 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106832
摘要

• Ophthalmic disease analysis using convolutional neural networks and self-attention mechanisms. • B-scan images of 4686 adult patients with different ophthalmic disease were selected. • Self-supervised lesion localization based on ophthalmic disease classification results. • Compared with other methods, our proposed method improves the overall accuracy, sensitivity and specificity by 7.6, 10.9 and 9.2, respectively. A retina optical coherence tomography (OCT) image differs from a traditional image due to its significant speckle noise, irregularity, and inconspicuous features. A conventional deep learning architecture cannot effectively improve the classification accuracy, sensitivity, and specificity of OCT images, and noisy images are not conducive to further diagnosis. This paper proposes a novel lesion-localization convolution transformer (LLCT) method, which combines both convolution and self-attention to classify ophthalmic diseases more accurately and localize the lesions in retina OCT images. A novel architecture design is accomplished through applying customized feature maps generated by convolutional neutral network (CNN) as the input sequence of self-attention network. This design takes advantages of CNN's extracting image features and transformer's consideration of global context and dynamic attention. Part of the model is backward propagated to calculate the gradient as a weight parameter, which is multiplied and summed with the global features generated by the forward propagation process to locate the lesion. Extensive experiments show that our proposed design achieves improvement of about 7.6% in overall accuracy, 10.9% in overall sensitivity, and 9.2% in overall specificity compared with previous methods. And the lesions can be localized without the labeling data of lesion location in OCT images. The results prove that our method significantly improves the performance and reduces the computation complexity in artificial intelligence assisted analysis of ophthalmic disease through OCT images. Our method has a significance boost in ophthalmic disease classification and location via convolution transformer. This is applicable to assist ophthalmologists greatly. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千空完成签到 ,获得积分10
2秒前
gwbk完成签到,获得积分10
12秒前
yuxi2025完成签到 ,获得积分10
24秒前
Dong完成签到 ,获得积分10
31秒前
31秒前
woxinyouyou完成签到,获得积分0
32秒前
GIA发布了新的文献求助10
36秒前
GIA完成签到,获得积分10
53秒前
WSY完成签到 ,获得积分10
54秒前
tszjw168完成签到 ,获得积分10
1分钟前
1分钟前
Chavin发布了新的文献求助20
1分钟前
舒心完成签到 ,获得积分10
1分钟前
流星雨完成签到 ,获得积分10
2分钟前
2分钟前
gszy1975发布了新的文献求助10
2分钟前
windows发布了新的文献求助10
2分钟前
2分钟前
人生何处不相逢完成签到,获得积分10
2分钟前
美丽发布了新的文献求助10
2分钟前
Ricardo完成签到 ,获得积分10
2分钟前
HHM完成签到,获得积分10
2分钟前
windows完成签到,获得积分10
2分钟前
wenbinvan完成签到,获得积分0
3分钟前
英喆完成签到 ,获得积分10
3分钟前
一盏壶完成签到,获得积分10
3分钟前
无辜的行云完成签到 ,获得积分0
4分钟前
yingzaifeixiang完成签到 ,获得积分10
4分钟前
zink完成签到,获得积分10
4分钟前
lyj完成签到 ,获得积分10
4分钟前
培培完成签到 ,获得积分10
4分钟前
dreamwalk完成签到 ,获得积分10
4分钟前
yyx完成签到 ,获得积分10
4分钟前
粗心的飞槐完成签到 ,获得积分10
4分钟前
shining完成签到,获得积分10
5分钟前
V_I_G完成签到 ,获得积分10
5分钟前
Llt驳回了小蘑菇应助
6分钟前
LeoBigman完成签到 ,获得积分10
6分钟前
好运常在完成签到 ,获得积分10
7分钟前
Draymond完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Einführung in die Rechtsphilosophie und Rechtstheorie der Gegenwart 1500
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Electrochemistry: Volume 17 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4952365
求助须知:如何正确求助?哪些是违规求助? 4215092
关于积分的说明 13111197
捐赠科研通 3997017
什么是DOI,文献DOI怎么找? 2187723
邀请新用户注册赠送积分活动 1202987
关于科研通互助平台的介绍 1115740