Towards more efficient ophthalmic disease classification and lesion location via convolution transformer

人工智能 计算机科学 卷积神经网络 光学相干层析成像 模式识别(心理学) 深度学习 散斑噪声 卷积(计算机科学) 计算 变压器 计算机视觉 斑点图案 算法 人工神经网络 医学 电压 放射科 物理 量子力学
作者
Huajie Wen,Jian Zhao,Shaohua Xiang,Lin Lin,Chengjian Liu,Tao Wang,Lin An,Lixin Liang,Bingding Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:220: 106832-106832 被引量:18
标识
DOI:10.1016/j.cmpb.2022.106832
摘要

• Ophthalmic disease analysis using convolutional neural networks and self-attention mechanisms. • B-scan images of 4686 adult patients with different ophthalmic disease were selected. • Self-supervised lesion localization based on ophthalmic disease classification results. • Compared with other methods, our proposed method improves the overall accuracy, sensitivity and specificity by 7.6, 10.9 and 9.2, respectively. A retina optical coherence tomography (OCT) image differs from a traditional image due to its significant speckle noise, irregularity, and inconspicuous features. A conventional deep learning architecture cannot effectively improve the classification accuracy, sensitivity, and specificity of OCT images, and noisy images are not conducive to further diagnosis. This paper proposes a novel lesion-localization convolution transformer (LLCT) method, which combines both convolution and self-attention to classify ophthalmic diseases more accurately and localize the lesions in retina OCT images. A novel architecture design is accomplished through applying customized feature maps generated by convolutional neutral network (CNN) as the input sequence of self-attention network. This design takes advantages of CNN's extracting image features and transformer's consideration of global context and dynamic attention. Part of the model is backward propagated to calculate the gradient as a weight parameter, which is multiplied and summed with the global features generated by the forward propagation process to locate the lesion. Extensive experiments show that our proposed design achieves improvement of about 7.6% in overall accuracy, 10.9% in overall sensitivity, and 9.2% in overall specificity compared with previous methods. And the lesions can be localized without the labeling data of lesion location in OCT images. The results prove that our method significantly improves the performance and reduces the computation complexity in artificial intelligence assisted analysis of ophthalmic disease through OCT images. Our method has a significance boost in ophthalmic disease classification and location via convolution transformer. This is applicable to assist ophthalmologists greatly. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
lee发布了新的文献求助10
1秒前
2秒前
传奇3应助虚拟的日记本采纳,获得10
2秒前
3秒前
糖糖发布了新的文献求助10
4秒前
小李发布了新的文献求助10
4秒前
5秒前
5秒前
5秒前
yfe完成签到,获得积分10
6秒前
dablack发布了新的文献求助10
7秒前
11发布了新的文献求助10
7秒前
小瑾发布了新的文献求助10
9秒前
9秒前
cua发布了新的文献求助10
10秒前
简单代双发布了新的文献求助30
11秒前
17发布了新的文献求助10
12秒前
12秒前
12秒前
喜乐多完成签到 ,获得积分10
12秒前
11完成签到,获得积分10
13秒前
13秒前
13秒前
15秒前
16秒前
煎炒焖煮炸培根完成签到,获得积分10
16秒前
16秒前
16秒前
Naxop完成签到,获得积分10
19秒前
qian4发布了新的文献求助10
19秒前
cua完成签到,获得积分10
19秒前
hzc完成签到,获得积分0
19秒前
楼轶发布了新的文献求助10
20秒前
传奇3应助专注的含蕊采纳,获得10
20秒前
21秒前
五五乐发布了新的文献求助10
22秒前
陈学发布了新的文献求助10
22秒前
善良映寒发布了新的文献求助10
23秒前
螳螂腿子完成签到,获得积分10
24秒前
月半孩子完成签到 ,获得积分10
24秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Animal Physiology 2000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732483
求助须知:如何正确求助?哪些是违规求助? 3276724
关于积分的说明 9998431
捐赠科研通 2992293
什么是DOI,文献DOI怎么找? 1642165
邀请新用户注册赠送积分活动 780239
科研通“疑难数据库(出版商)”最低求助积分说明 748713