亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards more efficient ophthalmic disease classification and lesion location via convolution transformer

人工智能 计算机科学 卷积神经网络 光学相干层析成像 模式识别(心理学) 深度学习 散斑噪声 卷积(计算机科学) 计算 变压器 计算机视觉 斑点图案 算法 人工神经网络 医学 电压 放射科 物理 量子力学
作者
Huajie Wen,Jian Zhao,Shaohua Xiang,Lin Lin,Chengjian Liu,Tao Wang,Lin An,Lixin Liang,Bingding Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106832-106832 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106832
摘要

• Ophthalmic disease analysis using convolutional neural networks and self-attention mechanisms. • B-scan images of 4686 adult patients with different ophthalmic disease were selected. • Self-supervised lesion localization based on ophthalmic disease classification results. • Compared with other methods, our proposed method improves the overall accuracy, sensitivity and specificity by 7.6, 10.9 and 9.2, respectively. A retina optical coherence tomography (OCT) image differs from a traditional image due to its significant speckle noise, irregularity, and inconspicuous features. A conventional deep learning architecture cannot effectively improve the classification accuracy, sensitivity, and specificity of OCT images, and noisy images are not conducive to further diagnosis. This paper proposes a novel lesion-localization convolution transformer (LLCT) method, which combines both convolution and self-attention to classify ophthalmic diseases more accurately and localize the lesions in retina OCT images. A novel architecture design is accomplished through applying customized feature maps generated by convolutional neutral network (CNN) as the input sequence of self-attention network. This design takes advantages of CNN's extracting image features and transformer's consideration of global context and dynamic attention. Part of the model is backward propagated to calculate the gradient as a weight parameter, which is multiplied and summed with the global features generated by the forward propagation process to locate the lesion. Extensive experiments show that our proposed design achieves improvement of about 7.6% in overall accuracy, 10.9% in overall sensitivity, and 9.2% in overall specificity compared with previous methods. And the lesions can be localized without the labeling data of lesion location in OCT images. The results prove that our method significantly improves the performance and reduces the computation complexity in artificial intelligence assisted analysis of ophthalmic disease through OCT images. Our method has a significance boost in ophthalmic disease classification and location via convolution transformer. This is applicable to assist ophthalmologists greatly. 1

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zp19877891完成签到,获得积分10
2秒前
在水一方应助whoknowsname采纳,获得10
4秒前
完美世界应助whoknowsname采纳,获得10
4秒前
4秒前
5秒前
7秒前
汉堡包应助颜颜采纳,获得10
10秒前
许译匀发布了新的文献求助10
10秒前
edddzzz发布了新的文献求助10
11秒前
蓝天应助许译匀采纳,获得10
15秒前
酷波er应助许译匀采纳,获得10
15秒前
23秒前
两斤发布了新的文献求助10
26秒前
PiaoGuo完成签到,获得积分10
28秒前
29秒前
玉欢发布了新的文献求助20
29秒前
feiCheung完成签到 ,获得积分10
33秒前
Xiaoan发布了新的文献求助20
34秒前
烂漫向雁完成签到,获得积分10
36秒前
russing完成签到 ,获得积分10
46秒前
丰富的澜完成签到 ,获得积分10
48秒前
自然秋双完成签到,获得积分10
52秒前
52秒前
edddzzz完成签到,获得积分20
54秒前
56秒前
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
天天快乐应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
BowieHuang应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助王宽宽宽采纳,获得10
1分钟前
扑通扑通通完成签到 ,获得积分10
1分钟前
1分钟前
酷波er应助玉欢采纳,获得10
1分钟前
vetzlk完成签到 ,获得积分10
1分钟前
lifenghou完成签到 ,获得积分10
1分钟前
王宽宽宽发布了新的文献求助10
1分钟前
samuel完成签到,获得积分10
1分钟前
野性的沉鱼完成签到 ,获得积分10
1分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5723308
求助须知:如何正确求助?哪些是违规求助? 5275799
关于积分的说明 15298415
捐赠科研通 4871881
什么是DOI,文献DOI怎么找? 2616297
邀请新用户注册赠送积分活动 1566104
关于科研通互助平台的介绍 1523016