亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards more efficient ophthalmic disease classification and lesion location via convolution transformer

人工智能 计算机科学 卷积神经网络 光学相干层析成像 模式识别(心理学) 深度学习 散斑噪声 卷积(计算机科学) 计算 变压器 计算机视觉 斑点图案 算法 人工神经网络 医学 电压 放射科 物理 量子力学
作者
Huajie Wen,Jian Zhao,Shaohua Xiang,Lin Lin,Chengjian Liu,Tao Wang,Lin An,Lixin Liang,Bingding Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier BV]
卷期号:220: 106832-106832 被引量:18
标识
DOI:10.1016/j.cmpb.2022.106832
摘要

• Ophthalmic disease analysis using convolutional neural networks and self-attention mechanisms. • B-scan images of 4686 adult patients with different ophthalmic disease were selected. • Self-supervised lesion localization based on ophthalmic disease classification results. • Compared with other methods, our proposed method improves the overall accuracy, sensitivity and specificity by 7.6, 10.9 and 9.2, respectively. A retina optical coherence tomography (OCT) image differs from a traditional image due to its significant speckle noise, irregularity, and inconspicuous features. A conventional deep learning architecture cannot effectively improve the classification accuracy, sensitivity, and specificity of OCT images, and noisy images are not conducive to further diagnosis. This paper proposes a novel lesion-localization convolution transformer (LLCT) method, which combines both convolution and self-attention to classify ophthalmic diseases more accurately and localize the lesions in retina OCT images. A novel architecture design is accomplished through applying customized feature maps generated by convolutional neutral network (CNN) as the input sequence of self-attention network. This design takes advantages of CNN's extracting image features and transformer's consideration of global context and dynamic attention. Part of the model is backward propagated to calculate the gradient as a weight parameter, which is multiplied and summed with the global features generated by the forward propagation process to locate the lesion. Extensive experiments show that our proposed design achieves improvement of about 7.6% in overall accuracy, 10.9% in overall sensitivity, and 9.2% in overall specificity compared with previous methods. And the lesions can be localized without the labeling data of lesion location in OCT images. The results prove that our method significantly improves the performance and reduces the computation complexity in artificial intelligence assisted analysis of ophthalmic disease through OCT images. Our method has a significance boost in ophthalmic disease classification and location via convolution transformer. This is applicable to assist ophthalmologists greatly. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Duke_ethan完成签到,获得积分10
刚刚
XFaning完成签到 ,获得积分20
13秒前
555完成签到,获得积分10
14秒前
Rondab应助griffon采纳,获得10
28秒前
XFaning关注了科研通微信公众号
37秒前
Bearbiscuit完成签到,获得积分10
41秒前
qi完成签到,获得积分20
42秒前
爱静静应助科研通管家采纳,获得10
44秒前
爱静静应助科研通管家采纳,获得10
44秒前
爱静静应助科研通管家采纳,获得10
44秒前
小二郎应助科研通管家采纳,获得10
44秒前
爱静静应助科研通管家采纳,获得10
44秒前
爱静静应助科研通管家采纳,获得10
45秒前
丘比特应助科研通管家采纳,获得10
45秒前
爱静静应助科研通管家采纳,获得10
45秒前
Sandy应助科研通管家采纳,获得20
45秒前
爱静静应助科研通管家采纳,获得30
45秒前
爱静静应助科研通管家采纳,获得10
45秒前
Sandy应助科研通管家采纳,获得20
45秒前
49秒前
mmff完成签到,获得积分20
50秒前
qi发布了新的文献求助10
50秒前
Vaseegara完成签到 ,获得积分10
51秒前
朴素的无招完成签到 ,获得积分10
1分钟前
Dengera完成签到,获得积分10
1分钟前
1分钟前
Dengera发布了新的文献求助10
1分钟前
Persist6578完成签到 ,获得积分10
1分钟前
无花果应助淡然采纳,获得10
1分钟前
淡然完成签到,获得积分10
1分钟前
1分钟前
Persist完成签到 ,获得积分10
1分钟前
冷酷的啤酒完成签到,获得积分10
1分钟前
淡然发布了新的文献求助10
1分钟前
丘比特应助寻风采纳,获得10
2分钟前
2分钟前
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
天天快乐应助科研通管家采纳,获得10
2分钟前
爱静静应助科研通管家采纳,获得10
2分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3968433
求助须知:如何正确求助?哪些是违规求助? 3513255
关于积分的说明 11167026
捐赠科研通 3248604
什么是DOI,文献DOI怎么找? 1794268
邀请新用户注册赠送积分活动 874990
科研通“疑难数据库(出版商)”最低求助积分说明 804629