亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Towards more efficient ophthalmic disease classification and lesion location via convolution transformer

人工智能 计算机科学 卷积神经网络 光学相干层析成像 模式识别(心理学) 深度学习 散斑噪声 卷积(计算机科学) 计算 变压器 计算机视觉 斑点图案 算法 人工神经网络 医学 电压 放射科 物理 量子力学
作者
Huajie Wen,Jian Zhao,Shaohua Xiang,Lin Lin,Chengjian Liu,Tao Wang,Lin An,Lixin Liang,Bingding Huang
出处
期刊:Computer Methods and Programs in Biomedicine [Elsevier]
卷期号:220: 106832-106832 被引量:23
标识
DOI:10.1016/j.cmpb.2022.106832
摘要

• Ophthalmic disease analysis using convolutional neural networks and self-attention mechanisms. • B-scan images of 4686 adult patients with different ophthalmic disease were selected. • Self-supervised lesion localization based on ophthalmic disease classification results. • Compared with other methods, our proposed method improves the overall accuracy, sensitivity and specificity by 7.6, 10.9 and 9.2, respectively. A retina optical coherence tomography (OCT) image differs from a traditional image due to its significant speckle noise, irregularity, and inconspicuous features. A conventional deep learning architecture cannot effectively improve the classification accuracy, sensitivity, and specificity of OCT images, and noisy images are not conducive to further diagnosis. This paper proposes a novel lesion-localization convolution transformer (LLCT) method, which combines both convolution and self-attention to classify ophthalmic diseases more accurately and localize the lesions in retina OCT images. A novel architecture design is accomplished through applying customized feature maps generated by convolutional neutral network (CNN) as the input sequence of self-attention network. This design takes advantages of CNN's extracting image features and transformer's consideration of global context and dynamic attention. Part of the model is backward propagated to calculate the gradient as a weight parameter, which is multiplied and summed with the global features generated by the forward propagation process to locate the lesion. Extensive experiments show that our proposed design achieves improvement of about 7.6% in overall accuracy, 10.9% in overall sensitivity, and 9.2% in overall specificity compared with previous methods. And the lesions can be localized without the labeling data of lesion location in OCT images. The results prove that our method significantly improves the performance and reduces the computation complexity in artificial intelligence assisted analysis of ophthalmic disease through OCT images. Our method has a significance boost in ophthalmic disease classification and location via convolution transformer. This is applicable to assist ophthalmologists greatly. 1
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
26秒前
浮游应助科研通管家采纳,获得10
27秒前
51秒前
快乐飞丹发布了新的文献求助10
54秒前
1分钟前
快乐飞丹完成签到,获得积分20
1分钟前
9527应助Wei采纳,获得10
1分钟前
大模型应助千堆雪claris采纳,获得10
1分钟前
充电宝应助平安喜乐采纳,获得10
1分钟前
1分钟前
1分钟前
研友_nEWRJ8完成签到,获得积分10
1分钟前
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
天天快乐应助西西娃儿采纳,获得10
2分钟前
浮游应助科研通管家采纳,获得10
2分钟前
深情安青应助平安喜乐采纳,获得10
2分钟前
2分钟前
Wei发布了新的文献求助10
2分钟前
平安喜乐发布了新的文献求助10
2分钟前
3分钟前
西西娃儿发布了新的文献求助10
3分钟前
Jie关闭了Jie文献求助
3分钟前
李健应助平安喜乐采纳,获得10
3分钟前
4分钟前
4分钟前
Jie驳回了ding应助
4分钟前
西西娃儿发布了新的文献求助10
4分钟前
平安喜乐发布了新的文献求助10
4分钟前
浮游应助科研通管家采纳,获得10
4分钟前
大个应助动人的尔容采纳,获得10
4分钟前
4分钟前
Jie发布了新的文献求助200
4分钟前
非泥完成签到,获得积分10
5分钟前
Chris完成签到 ,获得积分0
5分钟前
Jie完成签到,获得积分10
5分钟前
wanci应助平安喜乐采纳,获得10
5分钟前
5分钟前
Jie发布了新的文献求助30
5分钟前
5分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5292612
求助须知:如何正确求助?哪些是违规求助? 4443079
关于积分的说明 13830884
捐赠科研通 4326534
什么是DOI,文献DOI怎么找? 2374944
邀请新用户注册赠送积分活动 1370275
关于科研通互助平台的介绍 1334824