Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure

计算生物学 康蒂格 基因 生物 遗传学 进化生物学 基因组
作者
Lotte J. U. Pronk,Marnix H. Medema
出处
期刊:Microbial genomics [Microbiology Society]
卷期号:8 (5) 被引量:31
标识
DOI:10.1099/mgen.0.000823
摘要

Metagenomics has become a prominent technology to study the functional potential of all organisms in a microbial community. Most studies focus on the bacterial content of these communities, while ignoring eukaryotic microbes. Indeed, many metagenomics analysis pipelines silently assume that all contigs in a metagenome are prokaryotic, likely resulting in less accurate annotation of eukaryotes in metagenomes. Early detection of eukaryotic contigs allows for eukaryote-specific gene prediction and functional annotation. Here, we developed a classifier that distinguishes eukaryotic from prokaryotic contigs based on foundational differences between these taxa in terms of gene structure. We first developed Whokaryote, a random forest classifier that uses intergenic distance, gene density and gene length as the most important features. We show that, with an estimated recall, precision and accuracy of 94, 96 and 95 %, respectively, this classifier with features grounded in biology can perform almost as well as the classifiers EukRep and Tiara, which use k-mer frequencies as features. By retraining our classifier with Tiara predictions as an additional feature, the weaknesses of both types of classifiers are compensated; the result is Whokaryote+Tiara, an enhanced classifier that outperforms all individual classifiers, with an F1 score of 0.99 for both eukaryotes and prokaryotes, while still being fast. In a reanalysis of metagenome data from a disease-suppressive plant endospheric microbial community, we show how using Whokaryote+Tiara to select contigs for eukaryotic gene prediction facilitates the discovery of several biosynthetic gene clusters that were missed in the original study. Whokaryote (+Tiara) is wrapped in an easily installable package and is freely available from https://github.com/LottePronk/whokaryote.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ljc发布了新的文献求助10
1秒前
qqq发布了新的文献求助10
1秒前
2秒前
2秒前
墨竹青浅完成签到,获得积分10
2秒前
2秒前
3秒前
4秒前
研友_LXOvq8完成签到,获得积分10
4秒前
cc发布了新的文献求助10
4秒前
平常的凛发布了新的文献求助10
4秒前
风之旅人完成签到,获得积分10
5秒前
福猪猪完成签到 ,获得积分20
5秒前
嗨嗨发布了新的文献求助10
5秒前
在水一方应助阳光的雁山采纳,获得10
5秒前
Sarah悦发布了新的文献求助10
5秒前
Yolo完成签到,获得积分10
5秒前
5秒前
6秒前
大气乐儿发布了新的文献求助10
6秒前
lm完成签到,获得积分10
7秒前
7秒前
生动芝麻发布了新的文献求助10
7秒前
7秒前
花卷发布了新的文献求助10
8秒前
8秒前
8秒前
哈哈哈哈发布了新的文献求助10
8秒前
小二郎应助大鱼采纳,获得10
10秒前
ccy完成签到,获得积分10
10秒前
10秒前
Akim应助cc采纳,获得10
10秒前
11秒前
11秒前
过pass完成签到,获得积分10
11秒前
nibgak完成签到,获得积分10
11秒前
伶俐向薇完成签到,获得积分10
11秒前
Feng完成签到,获得积分10
11秒前
学术混子发布了新的文献求助10
11秒前
12秒前
高分求助中
Medicina di laboratorio. Logica e patologia clinica 600
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Sarcolestes leedsi Lydekker, an ankylosaurian dinosaur from the Middle Jurassic of England 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
Women in Power in Post-Communist Parliaments 450
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3217320
求助须知:如何正确求助?哪些是违规求助? 2866528
关于积分的说明 8152235
捐赠科研通 2533239
什么是DOI,文献DOI怎么找? 1366165
科研通“疑难数据库(出版商)”最低求助积分说明 644687
邀请新用户注册赠送积分活动 617684