Whokaryote: distinguishing eukaryotic and prokaryotic contigs in metagenomes based on gene structure

计算生物学 康蒂格 基因 生物 遗传学 进化生物学 基因组
作者
Lotte J. U. Pronk,Marnix H. Medema
出处
期刊:Microbial genomics [Microbiology Society]
卷期号:8 (5) 被引量:31
标识
DOI:10.1099/mgen.0.000823
摘要

Metagenomics has become a prominent technology to study the functional potential of all organisms in a microbial community. Most studies focus on the bacterial content of these communities, while ignoring eukaryotic microbes. Indeed, many metagenomics analysis pipelines silently assume that all contigs in a metagenome are prokaryotic, likely resulting in less accurate annotation of eukaryotes in metagenomes. Early detection of eukaryotic contigs allows for eukaryote-specific gene prediction and functional annotation. Here, we developed a classifier that distinguishes eukaryotic from prokaryotic contigs based on foundational differences between these taxa in terms of gene structure. We first developed Whokaryote, a random forest classifier that uses intergenic distance, gene density and gene length as the most important features. We show that, with an estimated recall, precision and accuracy of 94, 96 and 95 %, respectively, this classifier with features grounded in biology can perform almost as well as the classifiers EukRep and Tiara, which use k-mer frequencies as features. By retraining our classifier with Tiara predictions as an additional feature, the weaknesses of both types of classifiers are compensated; the result is Whokaryote+Tiara, an enhanced classifier that outperforms all individual classifiers, with an F1 score of 0.99 for both eukaryotes and prokaryotes, while still being fast. In a reanalysis of metagenome data from a disease-suppressive plant endospheric microbial community, we show how using Whokaryote+Tiara to select contigs for eukaryotic gene prediction facilitates the discovery of several biosynthetic gene clusters that were missed in the original study. Whokaryote (+Tiara) is wrapped in an easily installable package and is freely available from https://github.com/LottePronk/whokaryote.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mark2021发布了新的文献求助60
刚刚
slmj完成签到,获得积分10
刚刚
nnnaaaa完成签到,获得积分10
1秒前
lixia完成签到 ,获得积分10
1秒前
英姑应助roosterpan采纳,获得10
2秒前
3秒前
壮观觅柔发布了新的文献求助30
3秒前
活泼的如容完成签到,获得积分20
4秒前
哈哈哈66发布了新的文献求助10
4秒前
yoo发布了新的文献求助10
5秒前
5秒前
6秒前
上官若男应助冷傲迎梦采纳,获得10
6秒前
6秒前
7秒前
Lorayacarat发布了新的文献求助10
8秒前
lsl应助TXZ06采纳,获得30
8秒前
8秒前
小马甲应助wuxunxun2015采纳,获得10
8秒前
高大以南完成签到,获得积分10
10秒前
富贵临完成签到,获得积分10
10秒前
Helium发布了新的文献求助10
10秒前
10秒前
诸怀曼发布了新的文献求助10
10秒前
许某希完成签到 ,获得积分10
11秒前
11秒前
11秒前
张澳发布了新的文献求助10
11秒前
殷勤的问玉完成签到 ,获得积分10
12秒前
科研NM发布了新的文献求助10
12秒前
8899发布了新的文献求助10
13秒前
14秒前
14秒前
15秒前
FashionBoy应助如愿常隐行采纳,获得10
15秒前
诸怀曼完成签到,获得积分10
16秒前
安琦发布了新的文献求助10
16秒前
16秒前
BowieHuang应助lc339采纳,获得10
17秒前
17秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 6000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
The Political Psychology of Citizens in Rising China 800
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5637437
求助须知:如何正确求助?哪些是违规求助? 4743337
关于积分的说明 14999087
捐赠科研通 4795612
什么是DOI,文献DOI怎么找? 2562091
邀请新用户注册赠送积分活动 1521554
关于科研通互助平台的介绍 1481559