Growing ZnIn2S4 nanosheets on FeWO4 flowers with p-n heterojunction structure for efficient photocatalytic H2 production

异质结 光催化 材料科学 化学工程 纳米技术 生产(经济) 化学 光电子学 催化作用 工程类 有机化学 宏观经济学 经济
作者
Dezhi Kong,Xiaocheng Hu,Jiankun Geng,Yihan Zhao,Fan Dong,Yali Lu,Wenyue Geng,Dafeng Zhang,Junchang Liu,Hengshuai Li,Xipeng Pu
出处
期刊:Applied Surface Science [Elsevier]
卷期号:591: 153256-153256 被引量:96
标识
DOI:10.1016/j.apsusc.2022.153256
摘要

A face-to-face FeWO 4 /ZnIn 2 S 4 photocatalyst with p-n heterojunction structure was prepared via an in-situ of growth route toward efficient photocatalytic H 2 evolution. • FeWO 4 /ZnIn 2 S 4 composite were prepared via an in-situ of growth process. • The composite shows about 35 times higher than the photoactivity of ZnIn 2 S 4 . • The formed built-in field from p-n heterojunctions boosts the charge separation. • Based on experimental and DFT results, the photocatalytic mechanism was proposed. Constructing heterojunction structure can efficiently accelerate the separation and transfer of charge carriers and improve the photoactivity. Herein, a high-performance FeWO 4 /ZnIn 2 S 4 composite with abundant and tight 2D/2D hetero-interfaces was rational designed and prepared. ZnIn 2 S 4 nanosheets as hydrogen evolution species uniformly grow on the surface of FeWO 4 flower, constructing a unique face-to-face hierarchical architecture. A maximum H 2 production rate of 3531.2 μmol h −1 g −1 was obtained at the optimal mass ratio of FeWO 4 to ZnIn 2 S 4 , which was 35 times higher than pure ZnIn 2 S 4 . Based on the experimental results and the Density Functional Theoretical calculation results, a possible p-n heterojunction mechanism and the transfer route of photoinduced charges toward the improved H 2 production were proposed. The p-n heterojunction between FeWO 4 and ZnIn 2 S 4 nanosheets plays a key role in enhancing photocatalytic H 2 production activity. Moreover, the intimate interface between two components and the preferable hydrophilic property favors the improved H 2 evolution rate.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
唠嗑在呐完成签到,获得积分10
刚刚
温暖的炒饭完成签到,获得积分10
1秒前
1秒前
粟米完成签到,获得积分10
1秒前
fengmian发布了新的文献求助10
1秒前
Akim应助疯狂的觅翠采纳,获得10
1秒前
1秒前
大龙哥886应助任性凝蝶采纳,获得10
2秒前
wanci应助认真的博采纳,获得10
2秒前
2秒前
2秒前
汉堡包应助唠嗑在呐采纳,获得10
2秒前
JamesPei应助忧心的书文采纳,获得10
3秒前
领导范儿应助忧心的书文采纳,获得10
3秒前
领导范儿应助忧心的书文采纳,获得10
3秒前
小蘑菇应助忧心的书文采纳,获得10
3秒前
所所应助夕荀采纳,获得10
3秒前
3秒前
Www完成签到 ,获得积分10
3秒前
英俊的铭应助忧心的书文采纳,获得10
3秒前
3秒前
丘比特应助忧心的书文采纳,获得200
3秒前
半夜的拼图完成签到,获得积分10
3秒前
经又夏发布了新的文献求助10
3秒前
佩琪小姨发布了新的文献求助10
4秒前
李健的粉丝团团长应助znn采纳,获得10
5秒前
5秒前
5秒前
yiyi发布了新的文献求助10
6秒前
进_发布了新的文献求助10
6秒前
7秒前
陈阿土完成签到,获得积分10
7秒前
华仔应助RaccoonTao采纳,获得10
8秒前
8秒前
8秒前
9秒前
木木三发布了新的文献求助10
9秒前
爆米花应助ym采纳,获得10
10秒前
10秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
Building Quantum Computers 800
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
二氧化碳加氢催化剂——结构设计与反应机制研究 660
碳中和关键技术丛书--二氧化碳加氢 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5661227
求助须知:如何正确求助?哪些是违规求助? 4837867
关于积分的说明 15094878
捐赠科研通 4819976
什么是DOI,文献DOI怎么找? 2579690
邀请新用户注册赠送积分活动 1533972
关于科研通互助平台的介绍 1492764