A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 放大器 数学分析 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier]
卷期号:200: 108666-108666 被引量:5
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哒哒完成签到,获得积分10
刚刚
ocean完成签到,获得积分10
1秒前
2秒前
3秒前
小马甲应助抖音网页版采纳,获得10
3秒前
3秒前
陆康发布了新的文献求助10
5秒前
所所应助黄玉采纳,获得10
5秒前
张雪妮发布了新的文献求助10
5秒前
背后亦寒完成签到,获得积分20
6秒前
大写的笨完成签到,获得积分10
6秒前
7秒前
阿治发布了新的文献求助30
7秒前
8秒前
8秒前
8秒前
香蕉尔丝发布了新的文献求助30
9秒前
Sophia完成签到,获得积分10
9秒前
WEI发布了新的文献求助10
9秒前
10秒前
jhlz5879完成签到,获得积分0
11秒前
zhangzpe完成签到,获得积分10
11秒前
cruise发布了新的文献求助10
12秒前
阿治完成签到,获得积分20
13秒前
机灵饼干发布了新的文献求助10
13秒前
bkagyin应助小贾采纳,获得10
15秒前
16秒前
哈密哈密完成签到,获得积分10
16秒前
17秒前
mmqq完成签到,获得积分10
17秒前
无心的仙人掌完成签到,获得积分10
18秒前
phobeeee完成签到 ,获得积分10
19秒前
黄玉发布了新的文献求助10
20秒前
wy发布了新的文献求助10
21秒前
21秒前
量子星尘发布了新的文献求助10
21秒前
21秒前
WEI完成签到,获得积分10
22秒前
小二郎应助cruise采纳,获得10
22秒前
苗条盼山完成签到,获得积分20
23秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
Teaching Language in Context (Third Edition) 1000
List of 1,091 Public Pension Profiles by Region 961
流动的新传统主义与新生代农民工的劳动力再生产模式变迁 500
Historical Dictionary of British Intelligence (2014 / 2nd EDITION!) 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5445993
求助须知:如何正确求助?哪些是违规求助? 4555152
关于积分的说明 14249970
捐赠科研通 4477453
什么是DOI,文献DOI怎么找? 2453304
邀请新用户注册赠送积分活动 1444087
关于科研通互助平台的介绍 1420028