A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 放大器 数学分析 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier BV]
卷期号:200: 108666-108666 被引量:5
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小方完成签到,获得积分0
刚刚
方方方发布了新的文献求助10
1秒前
善学以致用应助煎饼果子采纳,获得10
1秒前
Beverly完成签到,获得积分10
1秒前
被动科研发布了新的文献求助10
1秒前
shuqian完成签到,获得积分10
2秒前
暴躁的香旋完成签到,获得积分10
3秒前
3秒前
CHINA_C13发布了新的文献求助150
3秒前
4秒前
4秒前
5秒前
cat_head发布了新的文献求助10
5秒前
Sally完成签到,获得积分10
6秒前
L罗1完成签到,获得积分10
6秒前
浮游应助zz采纳,获得10
6秒前
6秒前
ding应助Windycityguy采纳,获得10
7秒前
青青发布了新的文献求助10
7秒前
8秒前
8秒前
个性的紫菜应助雨寒采纳,获得50
8秒前
9秒前
zhuzhu发布了新的文献求助10
9秒前
奋斗映寒完成签到,获得积分10
9秒前
9秒前
Breathe发布了新的文献求助10
9秒前
淡然的冰海完成签到,获得积分10
10秒前
yanyimeng发布了新的文献求助10
10秒前
猫的淡淡发布了新的文献求助10
10秒前
量子星尘发布了新的文献求助10
11秒前
11秒前
11秒前
刻苦的三问应助热情蜗牛采纳,获得10
12秒前
搜集达人应助kkkkkkkk采纳,获得10
12秒前
情怀应助yutian928采纳,获得10
13秒前
爆米花应助彭泽林采纳,获得10
13秒前
ffw1发布了新的文献求助10
14秒前
14秒前
呆萌的正豪完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Stackable Smart Footwear Rack Using Infrared Sensor 300
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4603484
求助须知:如何正确求助?哪些是违规求助? 4012177
关于积分的说明 12422449
捐赠科研通 3692673
什么是DOI,文献DOI怎么找? 2035749
邀请新用户注册赠送积分活动 1068916
科研通“疑难数据库(出版商)”最低求助积分说明 953403