A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 数学分析 放大器 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier]
卷期号:200: 108666-108666 被引量:4
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
uu完成签到,获得积分10
刚刚
李海妍发布了新的文献求助10
1秒前
1秒前
等待的凝芙完成签到,获得积分10
2秒前
岁月如歌完成签到,获得积分10
2秒前
2秒前
迅速的鹤完成签到,获得积分10
2秒前
大仁哥完成签到,获得积分10
3秒前
wbhou完成签到 ,获得积分10
4秒前
一只学术小白完成签到,获得积分10
4秒前
小豪号完成签到,获得积分10
4秒前
shizaibide1314完成签到,获得积分10
5秒前
5秒前
5秒前
yuyang发布了新的文献求助10
5秒前
倩倩完成签到 ,获得积分10
5秒前
Bellis完成签到 ,获得积分10
6秒前
花Cheung完成签到,获得积分10
6秒前
6秒前
陶小陶完成签到,获得积分10
7秒前
海锅的小迷妹完成签到,获得积分10
8秒前
幸运星完成签到,获得积分10
8秒前
默默幼南完成签到,获得积分10
8秒前
wuhaoqingnian完成签到,获得积分10
9秒前
9秒前
一米阳光完成签到,获得积分10
10秒前
10秒前
狠毒的小龙虾完成签到,获得积分10
10秒前
小申发布了新的文献求助10
10秒前
10秒前
Ganno完成签到,获得积分20
10秒前
打打应助zyl采纳,获得10
10秒前
迅速奄完成签到,获得积分10
11秒前
aplainman发布了新的文献求助20
11秒前
12秒前
娃哈哈完成签到,获得积分10
12秒前
实验耗材应助故意的寒安采纳,获得10
12秒前
黄青青完成签到,获得积分10
12秒前
洛苏完成签到,获得积分10
12秒前
13秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Neuromuscular and Electrodiagnostic Medicine Board Review 700
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3467124
求助须知:如何正确求助?哪些是违规求助? 3059998
关于积分的说明 9069284
捐赠科研通 2750436
什么是DOI,文献DOI怎么找? 1509250
科研通“疑难数据库(出版商)”最低求助积分说明 697185
邀请新用户注册赠送积分活动 697084