重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 放大器 数学分析 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier]
卷期号:200: 108666-108666 被引量:5
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助黄佳豪采纳,获得10
刚刚
小二郎应助Perrylin718采纳,获得10
1秒前
Lucas应助山木采纳,获得10
1秒前
1秒前
ZZQ发布了新的文献求助10
2秒前
真实的南琴完成签到,获得积分10
2秒前
4秒前
4秒前
斯文奇迹发布了新的文献求助20
4秒前
4秒前
4秒前
CipherSage应助echo采纳,获得10
4秒前
4秒前
小橙完成签到 ,获得积分10
5秒前
5秒前
量子星尘发布了新的文献求助10
5秒前
Rheanna完成签到,获得积分10
5秒前
晓晓来了发布了新的文献求助10
6秒前
葱花发布了新的文献求助10
7秒前
123发布了新的文献求助10
7秒前
Hello应助Hou采纳,获得10
7秒前
浮游应助饺子大王采纳,获得10
8秒前
开放焦发布了新的文献求助10
8秒前
彭于晏应助谨慎的雨梅采纳,获得10
9秒前
Melicon发布了新的文献求助10
9秒前
JL发布了新的文献求助10
9秒前
10秒前
背后的萧完成签到,获得积分10
10秒前
爆米花应助晓晓来了采纳,获得10
10秒前
Yanghongkai完成签到,获得积分20
11秒前
深情安青应助热情灵珊采纳,获得10
12秒前
酷波er应助徐月亮采纳,获得10
12秒前
饺子大王完成签到,获得积分20
12秒前
16秒前
开放焦完成签到,获得积分20
16秒前
17秒前
ln1111发布了新的文献求助10
17秒前
量子星尘发布了新的文献求助10
18秒前
谨慎的雨梅完成签到,获得积分10
19秒前
zt涛完成签到 ,获得积分10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467978
求助须知:如何正确求助?哪些是违规求助? 4571531
关于积分的说明 14330478
捐赠科研通 4498059
什么是DOI,文献DOI怎么找? 2464295
邀请新用户注册赠送积分活动 1453038
关于科研通互助平台的介绍 1427737