亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A distortion model-based pre-screening method for document image tampering localization under recapturing attack

计算机科学 失真(音乐) 图像(数学) 人工智能 中间调 计算机视觉 方案(数学) 模式识别(心理学) 数据挖掘 数学 计算机网络 数学分析 放大器 带宽(计算)
作者
Changsheng Chen,Lin Zhao,Jiabin Yan,Haodong Li
出处
期刊:Signal Processing [Elsevier BV]
卷期号:200: 108666-108666 被引量:5
标识
DOI:10.1016/j.sigpro.2022.108666
摘要

Document images are vulnerable to tampering by image editing tools. The forgery trace can be concealed by a simple but effective counter-forensic measure, i.e., recapturing the altered document image. It is of practical need to study the tampering localization method under recapturing attack. In this work, we first study spatial and spectral distortion models in the printing and scanning process. The distortion models are then employed in extracting spectral features in both tampered and untampered regions. The proposed forensic scheme can then be established by comparing the spectral features in both the questioned document image and the reference halftone patterns (obtained by exploiting the prior knowledge of the printing device). To evaluate the performance of our approach, we gather a high-quality image database of 528 captured or recaptured documents (about 185K patches) as well as 72 tampered-and-recaptured documents (about 27K patches). The experimental results show that the proposed method can accurately classify recaptured document images with AUC as high as 0.9999 even though the training and testing samples are collected by different devices. In the tampering localization experiment, the proposed method can be combined with some generic CNN models to yield a two-stage scheme with high efficiency and accuracy, i.e., F1-score as high as 0.9. Finally, we also show that the proposed method is a practical solution even without the prior knowledge of the printer model is unavailable. To benefit the academic society, the resource of our work is online available at http://shorturl.at/jxELP.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
11秒前
46秒前
50秒前
科研通AI5应助可爱的柜子采纳,获得10
52秒前
无极2023完成签到 ,获得积分0
1分钟前
Hello应助科研通管家采纳,获得10
1分钟前
1分钟前
Reyyyy发布了新的文献求助30
1分钟前
1分钟前
2分钟前
李健应助可爱的柜子采纳,获得10
2分钟前
2分钟前
Lucas应助迷人的冥王星采纳,获得10
2分钟前
qy关注了科研通微信公众号
2分钟前
2分钟前
qy发布了新的文献求助10
3分钟前
隐形曼青应助我喜欢下雪采纳,获得10
3分钟前
3分钟前
3分钟前
3分钟前
3分钟前
KYT完成签到 ,获得积分10
3分钟前
qqq完成签到,获得积分10
4分钟前
4分钟前
XXXX完成签到,获得积分10
5分钟前
5分钟前
汉堡包应助科研通管家采纳,获得10
5分钟前
俭朴的乐巧完成签到 ,获得积分10
5分钟前
XXXX发布了新的文献求助20
5分钟前
爆米花应助健忘的幻梅采纳,获得10
5分钟前
莘莘发布了新的文献求助10
5分钟前
pc完成签到 ,获得积分20
5分钟前
5分钟前
5分钟前
5分钟前
twk发布了新的文献求助10
5分钟前
6分钟前
6分钟前
Jasper应助莘莘采纳,获得10
6分钟前
Xin发布了新的文献求助10
6分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Musculoskeletal Pain - Market Insight, Epidemiology And Market Forecast - 2034 2000
Animal Physiology 2000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3746093
求助须知:如何正确求助?哪些是违规求助? 3288998
关于积分的说明 10061615
捐赠科研通 3005242
什么是DOI,文献DOI怎么找? 1650144
邀请新用户注册赠送积分活动 785740
科研通“疑难数据库(出版商)”最低求助积分说明 751242